Skip to main content

Rate Limiting Steps in Bioremediation

  • Chapter
Soil and Groundwater Pollution

Part of the book series: Soil & Environment ((SOEN,volume 4))

Abstract

Organic pollutants can be removed from soil by means of biological treatment. A major problem in the application of these treatments is the efficiency of biodegradation in soil. The bulk of the pollution can often be removed but certain residual amounts remain unaltered (19, 22). In addition, biodegradation rates are often much slower than expected on the basis of laboratory trials. The kinetics of microbial growth alone are not sufficient to explain the slow biological removal rates in soil and the occurrence of residual amounts after bioremediation. The present paper will give a summary of factors that potentially result in a reduced biotransformation rate in soil, or in other words, reduce the bioavailability of the pollutants. First, a short discussion of the problem of bioavailability is presented. Then, several factors that may reduce the bioavailability of pollutants are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Beurskens, J. E. M., C. G. C. Dekker, H. Van den Heuvel, M. Swart, J. De Wolf, and J. Dolfing. 1994. Dechlorination of chlorinated benzenes by an anaerobic consortium that selectively mediates the thermodynamic most favorable reactions. Environ. Sci. Technol. 28: 701–706.

    Article  CAS  Google Scholar 

  2. Bollag, J.-M. 1991. Enzymatic binding of pesticide degradation products to soil organic matter and their possible release. Pestic. Transf. Prod. 459: 122–132.

    Article  CAS  Google Scholar 

  3. Bollag, J. M., and M. J. Loll. 1983. Incorporation of xenobiotics into soil humus. Experientia 39: 1221–1231.

    Article  CAS  Google Scholar 

  4. Bosma, T. N. P. 1994. Simulation of subsurface biotransformation, PhD-thesis, Agricultural University Wageningen, The Netherlands.

    Google Scholar 

  5. Bosma, T. N. P., R. A. G. Te Welscher, J. G. M. M. Smeenk, G. Schraa, and A. J. B. Zehnder. Biotransformation of organic contaminants in sediment columns and a dune infiltration area. submitted to Ground Water

    Google Scholar 

  6. Bosma, T. N. P., J. R. Van der Meer, G. Schraa, M. E. Tros, and A. J. B. Zehnder. 1988. Reductive dechlorination of all trichloro-and dichlorobenzene isomers. FEMS Microbiol. Ecol. 53: 223–229.

    Article  CAS  Google Scholar 

  7. Dolfing, J., and B. K. Harrison. 1992. Gibbs free energy of formation of halogenated aromatic compounds and their potential role as electron acceptors in anaerobic environments. Environ. Sci. Technol. 26: 2213–2218.

    Article  CAS  Google Scholar 

  8. Holliger, C., G. Schraa, A. J. M. Stams, and A. J. B. Zehnder. 1992. Enrichment and properties of an anaerobic mixed culture reductively dechlorinating 1,2,3-dichlorobenzene to 1,3-dichlorobenzene. Appl. Environ. Microbiol. 58: 1636–1644.

    CAS  Google Scholar 

  9. Kilbertus, G. 1980. Etude des microhabitats contenus dans les agrégats du sol. Leur relation avec la biomasse bactérienne et la taille des procaryotes présents. Rev. Ecol. Biol. Sol 17: 543–557.

    Google Scholar 

  10. Luthy, R. G., D. A. Dzombak, C. A. Peters, S. B. Roy, A. Ramaswami, D. V. Nakles, and B. R. Nott. 1994. Remediating tar-contaminated soils at manufactured gas plant sites, technological challenges. Environ. Sci. Technol. 28 (in press).

    Google Scholar 

  11. McCarthy, J. F., and J. M. Zachara. 1989. Subsurface transport of contaminants. Environ. Sci. Technol. 23: 496–502.

    CAS  Google Scholar 

  12. Öberg, L. G., B. Glas, S. E. Swanson, C. Rappe, and K. G. Paul. 1990. Peroxidase-catalyzed oxidation of chlorophenols to polychlorinated dibenzo-para-dioxins and dibenzofurans. Arch. Environ. Contam. Toxicol. 19: 930–938.

    Article  Google Scholar 

  13. Postma, J., and J. A. Van Veen. 1990. Habitable pore space and population dynamics of Rhizobium leguminosarum biovar trifolii introduced into soil. Microb. Ecol. 19: 149–161.

    Article  Google Scholar 

  14. Rijnaarts, H. H. M., A. Bachmann, J. C. Jumelet, and A. J. B. Zehnder. 1990. Effect of desorption and intraparticle mass transfer on the aerobic biomineralization of a-hexachlorocyclohexane in a contaminated calcareous soil. Environ. Sci. Technol. 24: 1349–1354.

    Article  CAS  Google Scholar 

  15. Rittmann, B. E., B. F. Smets, and D. A. Stahl. 1990. The role of genes in biological processes. J. Environ. Sci. Technol. 24: 23–29.

    Article  CAS  Google Scholar 

  16. Schwarzenbach, R. P., P. M. Gschwend, and D. M. Imboden. 1993. Environmental organic chemistry. John Wiley & Sons, New York / Chichester / Brisbane / Toronto / Singapore.

    Google Scholar 

  17. Steinberg, S. M., J. J. Pignatello, and B. L. Sawhney. 1987. Persistence of 1,2-dibromoethane in soils: Entrapment in intraparticle micropores. Environ. Sci. Technol. 21: 1201–1208.

    Article  CAS  Google Scholar 

  18. Svenson, A., L. O. Kjeller, and C. Rappe. 1989. Enzyme-Mediated Formation of 2,3,7,8-Substituted chlorinated dibenzodioxins and dibenzofurans. Environ. Sci. Technol. 23: 900–902.

    Article  CAS  Google Scholar 

  19. Valo, R. J., and M. S. Salkinoja-Salonen. 1986. Bioreclamation of chlorophenol-contaminated soil by composting. Appl. Microbiol. Biotechnol. 25: 68–75.

    Article  CAS  Google Scholar 

  20. Van der Meer, J. R., W. M. De Vos, S. Harayama, and A. J. B. Zehnder. 1992. Molecular mechanisms of genetic adaptation to xenobiotic compounds. Microbiol. Rev. 56: 677–694.

    Google Scholar 

  21. Vogel, T. M., C. S. Criddle, and P. L. McCarty. 1987. Transformations of halogenated aliphatic compounds. Environ. Sci. Technol. 21: 722–736.

    Article  CAS  Google Scholar 

  22. Wang, X., and R. Bartha. 1990. Effects of bioremediation on residues, activity and toxicity in soil contaminated by fuel spills. Soil Biol. Biochem. 22: 501–505.

    Article  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Bosma, T.N.P. (1995). Rate Limiting Steps in Bioremediation. In: Zehnder, A.J.B. (eds) Soil and Groundwater Pollution. Soil & Environment, vol 4. Springer, Dordrecht. https://doi.org/10.1007/978-94-015-8587-3_32

Download citation

  • DOI: https://doi.org/10.1007/978-94-015-8587-3_32

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-4619-2

  • Online ISBN: 978-94-015-8587-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics