Skip to main content

Non Steady-State Thermal Model of Spreading Ridges: Implications for Melt Generation and Mantle Outcrops

  • Conference paper
Mantle and Lower Crust Exposed in Oceanic Ridges and in Ophiolites

Part of the book series: Petrology and Structural Geology ((PESG,volume 6))

Abstract

A non steady-state thermal model is proposed for the axial domain of spreading ridges, in which accretion is simulated as the superposition of seafloor spreading and thermal inputs which vary through time associated with magmato-tectonic cycles. Realistic time frequencies of accretion are tested for extreme cases of slow and fast spreading ridges. The thermal structure, melt fraction and crustal production are computed. For fast spreading ridges, the partial melt region is very wide and varies little through time; the associated crustal production is large and nearly constant. In contrast, melting zones beneath slow spreading ridges are narrow and waxing and waning through time; the associated crustal production decreases dramatically toward zero at the end of cycles. Our model reconciles opposing views on the geometry of the melting regions beneath spreading centres and their relationship to spreading rate. In addition, it accounts for the occurrence of mantle rock outcrops reported along the ridge axis and for the relationship between their relative abundance and axial segmentation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Arai, S. and Fujii, T., 1979. Petrology of ultramafic rocks from site 395. Initial Rep. Deep Sea Drill. Proj., 45: 587–594.

    Google Scholar 

  • Auzende, J.-M., Eissen, J.-R, Lafoy, Y., Gente, P. and Charlou, J.-L., 1988. Seafloor spreading in the North Fiji Basin (Southwest Pacific). Tectonophysics, 146: 317–351.

    Article  Google Scholar 

  • Auzende, J.-M., Gracia-Mont, E., Bendel, V., Lafoy, Y, Lagabrielle, Y, Okuda, Y and Ruellan, E., (in press), Morphologic variations at an intermediate rate spreading ridge (North Fiji Basin). In: Wiley etal. (Eds), Mantle and crustal process in Mid-Ocean Ridges, in press.

    Google Scholar 

  • Barclay, A.H., Toomey, D.R., Purdy, G.M. and Solomon, S.C., 1993. FARA microearthquake experiments III: results from the Mid-Atlantic Ridge at 35°N. Eos, Trans. AGU, 74: 601.

    Google Scholar 

  • Bassias, Y and Triboulet, C, 1992. Petrology and P-T-t evolution of the South West Indian Ridge peri-dotites. A case study: East of the Melville Fracture Zone at 62°E. Lithos, 28: 1–19.

    Article  Google Scholar 

  • Batiza, R., Melson, V. and O’Hearn, T., 1988. Simple magma supply geometry inferred beneath a segment of the Mid-Atlantic Ridge. Nature, 335: 428–431.

    Article  Google Scholar 

  • Batiza, R., Niu, Y and Zayac, W.C., 1990. Chemistry of seamounts near the East Pacific Rise: implications for the geometry of sub-axial mantle flow. Geology, 18: 1122–1125.

    Article  Google Scholar 

  • Bell, R.E. and Buck, W.R., 1992. Crustal control of ridge segmentation inferred from observations of theReykjanes Ridge. Nature, 357: 583–586.

    Article  Google Scholar 

  • Bideau, D., Hébert, R., Hékinian, R. and Cannât, M., 1991. Metamorphism of deep-seated rocks from the Garrett Ultrafast Transform (East Pacific Rise near 13°25’S). J. Geophys. Res., 96: 10079–10099.

    Article  Google Scholar 

  • Blackman, D.K. and Forsyth, D.W., 1991. Isostatic compensation of tectonic features of the Mid-Atlantic Ridge: 25–27°30’S. J. Geophys. Res., 96: 11741–11758.

    Article  Google Scholar 

  • Blackman, D.K. and Forsyth, D.W., 1992. The effects of plate thickening on three-dimensional, passive flow of the mantle beneath mid-ocean Ridges. In: J. Phipps Morgan, D.K. Blackman and J.M. Sinton (Eds), Mantle flow and melt generation at mid-ocean ridges. American Geophyssical Union, Washington, Geophysical Monograph 71, pp. 311–326.

    Chapter  Google Scholar 

  • Bonatti, E., Honnorez, J. and Ferrara, G., 1971. Peridotite-gabbro-basalt complex from the equatorial Mid-Atlantic Ridge. Phil. Trans. R. Soc. London., 268: 385–402.

    Article  Google Scholar 

  • Bonatti, E., Honnorez, J., Kirst, P. and Radicati, F., 1975. Metagabbros from the Mid-Atlantic Ridge at 6°N: contact-hydrothermal-dynamic metamorphism beneath the axial valley. J. Geol., 83: 61–78.

    Article  Google Scholar 

  • Bonatti, E. and Honnorez, J., 1976. Sections of the Earth’s crust in the Equatorial Atlantic. J. Geophys. Res., 81: 4104–4116.

    Article  Google Scholar 

  • Bonatti, E., Craig Simmons, E., Breger, D., Hamlyn, RR. and Lawrence, J., 1983. Ultramafic rock/seawa ter interaction in the oceanic crust: Mg-silicate (sepiolite) deposit from the Indian Ocean floor. Earth Planet. Sei. Lett., 62: 229–238.

    Article  Google Scholar 

  • Boudier, E, 1979. Microstructural study of three peridotite samples drilled at the western margin of the Mid-Atlantic Ridge. Initial Rep. Deep Sea Drill. Proj., 45: 603–608.

    Google Scholar 

  • Buck, W.R. and Su, W., 1989. Focused mantle upwelling below mid-ocean ridges due to feedback between viscosity and melting. Geophys. Res. Lett., 16: 641–644.

    Article  Google Scholar 

  • Cannât, M., Bideau, D. and Hébert, R., 1990a. Plastic deformation and magmatic impregnation in serpent tinized ultramafic rocks from the Garrett Transform Fault (East Pacific Rise). Earth Planet. Sei. Lett., 101: 216–232.

    Article  Google Scholar 

  • Cannât, M., Juteau, T. and Berger, E., 1990b. Petrostructural analysis of the leg 109 serpentinized peri dotites. Proc. Ocean Drill. Prog., Init. Repts., 106/109: 47–56.

    Google Scholar 

  • Cannât, M., Bideau, D. and Bougault, H., 1992. Serpentinized peridotites and gabbros in the Mid-Atlantic Ridge axial valley at 15°37′N and 16°52′N. Earth Planet. Sei. Lett., 109: 87–106.

    Article  Google Scholar 

  • Cannât, M., 1993. Emplacement of mantle rocks in the seafloor at mid-ocean ridges. J. Geophys. Res., 98: 4163–4172.

    Article  Google Scholar 

  • Carbotte, S. and Macdonald, K., 1992. East Pacific Rise 8°-10°30′N: evolution of ridge segments and dis continuities from SeaMARC II and three-dimensional magnetic studies. J. Geophys. Res., 97: 6959–6982.

    Article  Google Scholar 

  • CAYTROUGH, 1979. Geological and geophysical investigation of the Mid-Cayman Rise spreading cen-ter:initial results and observations. In: M. Talwani, CG. Harrison and D.E. Hayes (Eds), Deep Drilling Results in the Atlantic Ocean: Ocean crust, Maurice Ewing Ser. American Geophysical Union, Washington, pp. 66–95.

    Google Scholar 

  • Ceuleneer, G., Nicolas, A. and Boudier, F., 1988. Mantle flow patterns at an oceanic spreading centre: the Oman peridotites record. Tectonophysics, 151: 1–26.

    Article  Google Scholar 

  • Chadwick, W.W., Embley, R.W. and Fox, C.G., 1991. Evidence for volcanic eruption on the Southern Juan de Fuca Ridge between 1981 and 1987. Nature, 350: 416–148.

    Article  Google Scholar 

  • Constantin, M., Hékinian, R., Ackermand, D., Stoffers, P. and Francheteau, J., 1993. Upper mantle and lower crust exposed in the Easter microplate (South East Pacific). Terra Abstracts, 5: 184–185.

    Google Scholar 

  • Cordery, M.J. and Phipps Morgan, J., 1992. Melting and mantle flow beneath a mid-ocean spreading center. Earth Planet. Sei. Lett., III: 493–516.

    Article  Google Scholar 

  • Courtillot, V, Achache, J., Landre, F., Bonhommet, N., Montigny, R. and Féraud, G., 1984. Episodic spreading and rift propagation: new paleomagnetic and geochronologic data from the Afar nascent passive margin. J. Geophys. Res., 89: 3315–3333.

    Article  Google Scholar 

  • Crane, K. and Ballard, R.D., 1981. Volcanics and structure of the FAMOUS narrowgate rift: evidence for cyclic evolution: AMAR 1. J. Geophys. Res., 86: 5112–5124.

    Article  Google Scholar 

  • Davis, E.E. and Lister, C.R.B., 1974. Fundamentals of ridge crest topography. Earth Planet. Sei. Lett., 21: 405–413.

    Article  Google Scholar 

  • Davis, E.E., Currie, R. and Sawyer, B., 1987. Bathymetry map 6–1987, northern Juan de Fuca Ridge., Geological Survey of Canada, B.C., Sidney.

    Book  Google Scholar 

  • Dick, H.J.B., Thompson, G. and Bryan, W.B., 1981. Low-angle faulting and steady-state emplacement of plutonic rocks at ridge-transform intersection. Eos, Trans. AGU, 62: 406

    Google Scholar 

  • Dick, H.J.B., 1989. Abyssal peridotites, very slow spreading ridges and ocean ridge magmatism. In: A.D. Saunders and MJ. Norry (Eds), Magmatism in the ocean basins. Geological Society Special Publication, pp. 71–105.

    Google Scholar 

  • Douglas, J.J., 1955. On the numerical integration of d2u/dx2 + d2u/dy2 = du/dt by implicit methods. J. Soc. Indus. Appl. Math., 3: 42–65.

    Article  Google Scholar 

  • Engel, CG. and Fisher, R.L., 1975. Granitic to ultramafic rock complexes of the Indian Ocean Ridge system, western Indian Ocean. Geol. Soc. Am. Bull., 86: 1553–1578.

    Article  Google Scholar 

  • Forsyth, D.W., Ehrenbard, R.L. and Chapin, S., 1987. Anomalous upper mantle beneath the Australian-Antartic discordance. Earth Planet. Sei. Lett., 84: 471–478.

    Article  Google Scholar 

  • Forsyth, D.W., 1991. Comment on “A quantitative study of the axial topography of the Mid-Atlantic Ridge” by A. Malinverno. J. Geophys. Res., 96: 2039–2047.

    Article  Google Scholar 

  • Francheteau, J., Armijo, R., Cheminée, J.L., Hékinian, R., Lonsdale, P. and Blum, N., 1990. 1 Ma East Pacific Rise oceanic crust and uppermost mantle exposed by rifting in Hess Deep (Equatorial Pacific Ocean). Earth Planet. Sei. Lett., 101: 281–295.

    Article  Google Scholar 

  • Géli, L., 1993. Volcano-tectonic events and sedimentation since Late Miocene time at the Mohns Ridge, near 72°N, in the Norwegian-Greenland Sea. Tectonophysics, 222: 417–444.

    Article  Google Scholar 

  • Géli, L., Ondreas, H., Olivet, J.-L., Sahabi, M., Aslanian, D. and Gilg Capar, L., 1994a. Thermal structure vs. spreading rate at intermediate spreading rates: the example of the Pacific-Antarctic Ridge between 55°S and 63°S. Eos, Trans. AGU, 7: 330.

    Google Scholar 

  • Géli, L., Renard, V. and Rommevaux, C, 1994b. Ocean crust formation processes at very slow spreading centers: a model for the Mohns ridge, near 72°N, based on magnetic, gravity, and seismic data. J. Geophys. Res., 99: 2995–3013.

    Article  Google Scholar 

  • Gente, P., 1987. Etude morphostructurale comparative de dorsales océaniques à taux d’expansion variés., Thesis, Université de Bretagne Occidentale (Brest), 371 pp.

    Google Scholar 

  • Gente, P., Pockalny, R.A., Durand, C, Déplus, C, Maia, M., Ceuleneer, G., Mével, C, Cannât, M. and Laverne, C., (in press), Characteristics and evolution of the segmentation of the Mid-Atlantic Ridge between 20°N and 24°N during the last 10 million years. Earth Planet. Sei. Lett, in press.

    Google Scholar 

  • Girardeau, J. and Francheteau, J., 1993. Plagioclase-wehrlites and peridotites on the East Pacific Rise (Hess Deep) and the Mid-Atlantic Ridge (DSDP site 334): evidence for magma percolation in the oceanic upper mantle. Earth Planet. Sei. Lett., 115: 137–149.

    Article  Google Scholar 

  • Gracia, E., Ondreas, H., Bendel, V. and the STARMER Group, 1994. Multi-scale morphologic variability of the North Fiji Basin Ridge (Southwest Pacific). Mar. Geol., 116: 133–151.

    Article  Google Scholar 

  • Grindlay, N.R., Fox, P.J. and Vogt, P.R., 1992. Morphology and tectonics of the Mid-Atlantic Ridge (25°- 27°30’S) from Sea Beam and magnetic data. J. Geophys. Res., 97: 6983–7010.

    Article  Google Scholar 

  • Hamlyn, PR. and Bonatti, E., 1980. Petrology of mantle-derived ultramafics from the Owen Fracture Zone, Northwest Indian Ocean: implications for the nature of the oceanic upper mantle. Earth Planet. Sei. Lett., 48: 65–79.

    Article  Google Scholar 

  • Harper, G.D., 1985. Tectonics of slow-spreading mid-ocean ridges and consequences of a variable depth to the brittle/ductile transition. Tectonics, 4: 395–409.

    Article  Google Scholar 

  • Hébert, R., Bideau, D. and Hékinian, R., 1983. Ultramafic and mafic rocks from the Garret transform fault near 13°30′S on the East Pacific Rise: igneous petrology. Earth Planet. Sei. Lett., 65: 107–125.

    Article  Google Scholar 

  • Hékinian, R. and Aumento, F., 1973. Rocks from the Gibbs fracture zone and the Minia seamount near 53°N in the Atlantic Ocean. Mar. Geol., 14: 47–72.

    Article  Google Scholar 

  • Hékinian, R., Bideau, D., Cannât, M., Francheteau, J. and Hébert, R., 1992. Volcanic activity and crust-mantle exposure in the ultrafast Garrett Transform Fault near 13°28′S in the Pacific. Earth Planet. Sei. Lett., 108: 259–275.

    Article  Google Scholar 

  • Hékinian, R., Bideau, D., Francheteau, J., Cheminée, J.-L., Armijo, R., Londsale, P. and Blum, N., 1993. Petrology of the East Pacific Rise crust and upper mantle exposed in the Hess Deep (Eastern Equatorial Pacific). J. Geophys. Res., 98: 8069–8094.

    Article  Google Scholar 

  • Hodges, F.N. and Papike, J.J., 1977. Petrology of basalts, gabbros, and peridotites from DSDP leg 37. Initial Rep. Deep Sea Drill. Proj., 37: 711–719.

    Google Scholar 

  • Honnorez, J. and Kirst, P., 1975. Petrology of rodingites from the Equatorial Mid-Atlantic Ridge fracture zones and their geotectonic significance. Contrib. Mineral. Petrol., 49: 233–257.

    Article  Google Scholar 

  • Huang, P.Y., Solomon, S.C., Bergman, E.A. and Nabelek, J.L., 1986. Focal depths and mechanisms of Mid-Atlantic Ridge earthquakes from body waveform inversion. J. Geophys. Res., 91: 579–598.

    Article  Google Scholar 

  • Huang, PY. and Solomon, S.C., 1988. Centroid depths of Mid-Ocean-Ridge earthquakes: dependence on spreading rate. J. Geophys. Res., 93: 13445–13477.

    Article  Google Scholar 

  • Ito, E. and Anderson, A.T., 1983. Submarine metamorphism of gabbros from the Mid-Cayman Rise: pétrographie and minéralogie contraints on hydrothermal processes at slow-spreading ridges. Contrib. Mineral. Petrol., 82: 371–388.

    Article  Google Scholar 

  • Jaques, A.L. and Green, D.H., 1980. Anhydrous melting of peridotite at 0–15 kb pressure and the genesis of tholeiitic basalts. Contrib. Mineral. Petrol., 73: 287–310.

    Article  Google Scholar 

  • Johnson, K.T.M. and Dick, H.J.B., 1992. Open system melting and temporal and spatial variation of peridotite and basalt at the Atlantis II Fracture Zone. J. Geophys. Res., 97: 9219–9241.

    Article  Google Scholar 

  • Juteau, T., Berger, E. and Cannât, M., 1990a. Serpentinized, residual mantle peridotites from the MAR median valley, ODP hole 670a (21°10′N, 45°02′W, leg 109): primarily mineralogy and geothermome-try. Proc. Ocean Drill. Prog., Init. Repts., 106/109: 27–45.

    Google Scholar 

  • Juteau, T., Cannât, M. and Lagabrielle, Y., 1990b. Serpentinized peridotites in the upper oceanic crust away from transform zones: a comparison of the results of previous DSDP and ODP legs. Proc. Ocean Drill. Prog., Init. Repts., 106/109: 303–308.

    Google Scholar 

  • Kappel, E.S. and Ryan, W.B.F, 1986. Volcanic episodicity and a non-steady state rift valley along northeast Pacific spreading centers: evidence from Sea MARC I. J. Geophys. Res., 91: 13925–13940.

    Article  Google Scholar 

  • Karson, J.A., Brown, J.R. and Winters, A.T., 1986. Seafloor spreading in the MARK area. Eos, Trans. AGU, 67: 1213.

    Article  Google Scholar 

  • Karson, J.A., Thompson, G., Humphris, S.E., Edmond, J.M., Bryan, W.B., Brown, J.R., Winters, A.T.,Pockalny, R.A., Casey, J.F., Campbell, A.C., Klinkhammer, G., Palmer, M.R., Kinzler, R.J. and Sulanowska, M.M., 1987. Along-axis variations in seafloor spreading in the MARK area. Nature, 328:681–685.

    Article  Google Scholar 

  • Karson, J.A., 1991. Seafloor spreading on the Mid-Atlantic Ridge: implications for the structure of ophio-lites and oceanic lithosphère produced in slow-spreading environments. In: J. Malpas, E.M. Moores, A. Panayiotou and C. Xenophontos (Eds), Proceedings of the Symposium “Troodos 1987”. Geological Survey Department, Nicosia, Cyprus, pp. 547–555.

    Google Scholar 

  • Karsten, J.L., Hammond, S.R., Davis, E.E. and Currie, R.G., 1986. Detailed geomorphology and neotec-tonics of the Endeavour Segment, Juan de Fuca Ridge: new results from Seabeam swath mapping. Geol. Soc. Am. Bull., 97: 213–221.

    Article  Google Scholar 

  • Kashintsev, G.L., Kuzmin, M.L. and Popolitov, E.N., 1982. Composition and structure of the oceanic crust in the vicinity of the Hess Basin (Pacific Ocean). Geotectonics, 16: 512–520.

    Google Scholar 

  • Klein, E.M. and Langmuir, C.H., 1987. Global correlations of ocean ridge basalt chemistry with axial depth and crustal thickness. J. Geophys. Res., 92: 8089–8115.

    Article  Google Scholar 

  • Klein, E.M., Karsten, J.L., Batiza, R., Bailey, J., Bordelon, M., Broda, J., Ferguson, E., Gowen, M., Mukhopadhyay, R., Pichler, T., Sherman, S., Stephani, R., Tassara, A., Thatcher, M. and Young, R., 1993. Results from the 1993 southern CROSS expedition: morphological variations along the southern Chile Ridge. Eos, Trans. AGU, 74: 686.

    Google Scholar 

  • Kong, L.S.L., Solomon, S.C. and Purdy, G.M., 1992. Microearthquake characteristics of a mid-ocean ridge along-axis high. J. Geophys. Res., 97: 1659–1685.

    Article  Google Scholar 

  • Kuo, B.-Y. and Forsyth, D.W., 1988. Gravity anomalies of the ridge-transform system in the South Atlantic between 31 and 34.5°S: upwelling centers and variations in the crustal thickness. Mar. Geophys. Res., 10: 205–232.

    Article  Google Scholar 

  • Lafoy, Y, Auzende, J.-M., Ruellan, E., Huchon, P. and Honza, E., 1990. The 16°40′S triple junction in the North Fiji Basin (SW Pacific). Mar. Geophys. Res., 12: 285–296.

    Article  Google Scholar 

  • Lagabrielle, Y and Cannât, M., 1990. Alpine Jurassic ophiolites resemble the modern central Atlantic basement. Geology, 18: 319–322.

    Article  Google Scholar 

  • Lagabrielle, Y, Mamaloukas-Frangoulis, V., Cannât, M., Auzende, J.-M., Honnorez, J., Mével, C. and Bonatti, E., 1992. Vema Fracture Zone (Central Atlantic): tectonic and magmatic evolution of the median ridge and the eastern ridge-transform intersection domain. J. Geophys. Res., 97:17331–17351.

    Article  Google Scholar 

  • Langmuir, C.H., Bender, J.F., Shirey, S. and the Venture Leg 2 Scientific Team, 1990. A trace-element enriched province on the East Pacific Rise north of the Orozco Transform Fault. Eos, Trans. AGU, 71: 1703.

    Google Scholar 

  • Lewis, B.T.R., 1979. Periodicities in volcanism and longitudinal magma flow on the East Pacific Rise at 23°N. Geophys. Res. Lett., 6: 753–756.

    Article  Google Scholar 

  • Lichtman, G.S. and Eissen, J.-P., 1983. Time and space contraints on the evolution of medium-rate spreading centers. Geology, 11: 592–595.

    Article  Google Scholar 

  • Lin, J., Purdy, G.M., Schouten, H., Sempere, J.-C. and Zervas, C, 1990. Evidence from gravity data for focussed magmatic accretion along the Mid-Atlantic Ridge. Nature, 344: 627–632.

    Article  Google Scholar 

  • Lin, J. and Phipps Morgan, J., 1992. The spreading rate dependence of three-dimensional mid-ocean ridge gravity structure. Geophys. Res. Lett., 19: 13–16.

    Article  Google Scholar 

  • Lonsdale, P., 1986. Tectonic and magmatic ridges in the Eltanin fault system, South Pacific. Mar. Geophys. Res., 8: 203–242.

    Article  Google Scholar 

  • Macdonald, K.C., 1982. Mid-ocean ridges: fine scale tectonic, volcanic and hydrothermal processes within the plate bounbary zone. Ann. Rev. Earth Planet. Sei., 10: 155–190.

    Article  Google Scholar 

  • Madsen, J.A., Detrick, R.S., Mutter, J.C., Buhl, P. and Orcutt, J.A., 1990. A two- and three-dimensional analysis of gravity anomalies associated with the East Pacific Rise at 9°N and 13°N. J. Geophys. Res., 95: 4967–4987.

    Article  Google Scholar 

  • Malcolm, F.L., 1981. Microstructures of the Cayman Trough gabbros. J. Geol., 89: 675–688.

    Article  Google Scholar 

  • Malinverno, A. and Pockalny, R.A., 1990. Abyssal hill topography as an indicator of episodicity in the crustal accretion and deformation. Earth Planet. Sei. Lett., 99: 154–169.

    Article  Google Scholar 

  • Malinverno, A., 1991. Inverse square-root dependence of mid-ocean-ridge flank roughness on spreading rate. Nature, 352: 58–60.

    Article  Google Scholar 

  • Marks, K.M. and Stock, J.M., 1994. Variations in ridge morphology and depth-age relationships on the Pacific-Antarctic Ridge. J. Geophys. Res., 99: 531–541.

    Article  Google Scholar 

  • McAdoo, D.C. and Marks, K.M., 1992. Gravity fields of the Southern Ocean from Geosat data. J. Geophys. Res., 97: 3247–3260.

    Article  Google Scholar 

  • McClain, J.S. and Lewis, B.T.R., 1980. A seismic experiment at the axis of the East Pacific Rise. Mar. Geol., 35: 147–169.

    Article  Google Scholar 

  • McKenzie, D., 1967. Some remarks on heat flow and gravity anomalies. J. Geophys. Res., 72: 6261–6273.

    Article  Google Scholar 

  • McKenzie, D., 1984. The generation and compaction of partially molten rock. J. Petro., 25: 713–765.

    Article  Google Scholar 

  • Melson, W.G. and Thompson, G., 1970. Layered basic complex in oceanic crust, Romanche Fracture, Equatorial Atlantic Ocean. Science, 168: 817–820.

    Article  Google Scholar 

  • Menard, H.W., 1967. Sea floor spreading, topography, and the second layer. Science, 157: 923–924.

    Article  Google Scholar 

  • Mével, C, Auzende, J.-M., Cannât, M., Dorval, J.-R, Dubois, J., Fouquet, Y., Gente, P., Grimaud, P., Karson, J.A., Segonzac, M. and Stievenard, M., 1988.

    Google Scholar 

  • HYDROSNAKE 1988: submersible study of seafloor spreading in the MARK area. Eos, Trans. AGU, 69: 1439–1440.

    Google Scholar 

  • Mével, C., Cannât, M., Gente, P., Marion, E., Auzende, J.-M. and Karson, J. A., 1991. Emplacement of deep crustal and mantle rocks on the west median valley wall of the MARK area (MAR, 23°N). Tectonophysics, 190: 31–53.

    Article  Google Scholar 

  • Michael, P.J. and Bonatti, E., 1985a. Peridotite composition from the North Atlantic: regional and tectonic variations and implications for partial melting. Earth Planet. Sei. Lett., 73: 91–104.

    Article  Google Scholar 

  • Michael, P.J. and Bonatti, E., 1985b. Petrology of ultramafic rocks from sites 556, 558, and 560 in the north Atlantic. Initial Rep. Deep Sea Drill. Proj., 82: 523–530.

    Google Scholar 

  • Miyashiro, A., Shido, F. and Ewing, M., 1969. Composition and origin of serpentinites from the Mid-Atlantic Ridge near 24° and 30° orth latitude. Contrib. Mineral. Petrol., 23: 117–127.

    Article  Google Scholar 

  • Morris, E. and Detrick, R.S., 1991. Three-dimensional analysis of gravity anomalies in the MARK area, Mid-Atlantic Ridge 23°N. J. Geophys. Res., 96: 4355–4366.

    Article  Google Scholar 

  • Morton, J.L. and Sleep, N.H., 1985. A mid-ocean ridge thermal model: contraints on the volume of axial hydrothermal heat flux. J. Geophys. Res., 90: 11345–11353.

    Article  Google Scholar 

  • Murray, M.H., Kong, L., Forsyth, D.W., Solomon, S.C. and Hussong, D.M., 1984. An OBS study of microearthquakes in the median valley on the Mid-Atlantic Ridge near 35°N. Eos, Trans. AGU, 65: 1009.

    Google Scholar 

  • Neumann, G.A. and Forsyth, D.W., 1993. The paradox of the axial profile: isostatic compensation along the axis of the Mid-Atlantic Ridge? J. Geophys. Res., 98: 17891–17910.

    Article  Google Scholar 

  • Nicolas, A., 1989. Structures of ophiolites and dynamics of oceanic lithosphère., Kluwer Academic Publishers, 368 pp.

    Google Scholar 

  • Nicolas, A., Boudier, F. and Bouchez, J.-L., 1980. Interpretation of peridotite structures from ophiolitic and oceanic environments. Am. J. Sei., 280: 192–280.

    Google Scholar 

  • Niu, Y and Batiza, R., 1993. Chemical variation trends at fast and slow spreading Mid-Ocean Ridges. J. Geophys. Res., 98: 7887–7902.

    Article  Google Scholar 

  • OTTER, 1984. The geology of the Oceanographer transform: the ridge-transform intersection. Mar. Geophys. Res., 6: 109–141.

    Article  Google Scholar 

  • Palmer, J., Sempere, J.-C, Christie, D.M. and Phipps Morgan, J., 1993. Morphology and tectonics of the Australian-Antarctic Discordance between 123°E and 128°E. Mar. Geophys. Res., 15: 121–152.

    Article  Google Scholar 

  • Parmentier, E.M. and Phipps Morgan, J., 1990. Spreading rate dependence of three-dimensional structure in oceanic centres. Nature, 348: 325–328.

    Article  Google Scholar 

  • Parsons, B.E. and Sclater, J.G., 1977. An analysis of the variation of ocean floor bathymetry with age. J. Geophys. Res., 82: 803–827.

    Article  Google Scholar 

  • Patriat, P. and Courtillot, V., 1984. On the stability of triple junctions and its relation to episodicity in spreading. Tectonics, 3: 317–332.

    Article  Google Scholar 

  • Peaceman, D.W. and Rachford, H.H.J., 1955. Numerical solution of parabolic and elliptic differential equations. J. Soc. Indus. Appl. Math., 3: 28–41.

    Article  Google Scholar 

  • Phillips, J.D., Thompson, G., Von Herzen, R.P. and Bowen, V.T., 1969. Mid-Atlantic Ridge near 43°N latitude. J. Geophys. Res., 74: 3069–3081.

    Article  Google Scholar 

  • Phipps Morgan, J. and Forsyth, D.W., 1988. Three-dimensional flow and temperature perturbations due to a transform offset: effects on oceanic crustal and upper mantle structure. J. Geophys. Res., 93: 2955–2966.

    Article  Google Scholar 

  • Pockalny, R.A., Detrick, R.S. and Fox, P.J., 1988. Morphology and tectonics of the Kane Transform from Sea Beam bathymetry data. J. Geophys. Res., 93: 3179–3193.

    Article  Google Scholar 

  • Prinz, M., Keil, K., Green, J.A., Reid, A.M., Bonatti, E. and Honnorez, J., 1976. Ultramafic and mafic dredge samples from the Equatorial Mid-Atlantic Ridge and fracture zones. J. Geophys. Res., 81: 4087–4103.

    Article  Google Scholar 

  • Riedesel, M., Orcutt, J.A., Macdonald, K.C. and McClain, J.S., 1982. Microearthquakes in the black smoker hydrothermal field, East Pacific Rise at 21°N. J. Geophys. Res., 87: 10613–10623.

    Article  Google Scholar 

  • Rommevaux, C, 1994. Etude gravimétrique et magnétique de l’évolution de la segmentation des dorsales lentes., Thesis, Université de Paris VII, 282 pp.

    Google Scholar 

  • Rommevaux, C, Déplus, C, Patriat, P. and Sempéré, J.-C, 1994. Three-dimensional gravity study of the Mid-Atlantic Ridge: evolution of the segmentation between 28° and 29°N during the last 10 m.y. J. Geophys. Res., 99: 3015–3029.

    Article  Google Scholar 

  • Rona, P.A., Boström, K., Laubier, L. and Smith, K.L., 1983. Hydrothermal processes at seafloor spreading centers., Plenum press, 796 pp.

    Google Scholar 

  • Rona, P.A., Widenfalk, L. and Boström, K., 1987. Serpentinized ultramafics and hydrothermal activity at the Mid-Atlantic Ridge crest near 15°N. J. Geophys. Res., 92: 1417–1427.

    Article  Google Scholar 

  • Rudnik, G.B., 1976. Magmatic and metamorphism rocks in Hess Deep (in russian)., Geological and geophysical researches in the southeastern part of the Pacific Ocean. Nauka, Moscow, pp. 116–125.

    Google Scholar 

  • Ruegg, J.-C, Kasser, M. and Lépine, J.-C, 1984. Strain accumulation across the Asal-Ghoubbet Rift, Djibouti, East Africa. J. Geophys. Res., 89: 6237–6246.

    Article  Google Scholar 

  • Sandwell, D.T., 1992. Antarctic marine gravity field from high-density satellite altimetry. Geophys. J. Int., 109: 437–448.

    Article  Google Scholar 

  • Sauter, D., Whitechurch, H., Munschy, M. and Humler, E., 1991. Periodicity in the accretion process on the Southeast Indian Ridge at 27°40’S. Tectonophysics, 195: 47–64.

    Article  Google Scholar 

  • Schulz, N.J., Detrick, R.S. and Miller, S.P., 1988. Two and three dimensional inversions of magnetic anomalies in the MARK area (Mid-Atlantic Ridge 23°N). Mar. Geophys. Res., 10: 41–57.

    Article  Google Scholar 

  • Sempéré, J.-C, Lin, J., Brown, H.S., Schouten, H. and Purdy, G.M., 1993. Segmentation and morphotec-tonic variations along a slow-spreading center: the Mid-Atlantic Ridge (24°00′N-30°40′N). Mar. Geophys. Res., 15: 153–200.

    Article  Google Scholar 

  • Shipboard Scientific Party, Aumento, F., Melson, W.G., Bougault, H., Dmitriev, L., Fisher, J.F., Flower, M., Hall, J.M., Howe, R.C., Hyndman, R.D., Miles, G.A. and Robinson, P.T., 1977. Site 334. Initial Rep. Deep Sea Drill. Proj., 37: 239–287.

    Google Scholar 

  • Shipboard Scientific Party, Bryan, W.B., Juteau, T., Adamson, A.C., Autio, L.K., Becker, K., Bina, M., Eissen, J.-P., Fijii, T., Grove, T.L., Hamano, Y., Hebert, R., Komor, S.C., Kopietz, J., Krammer, K., Loubet, M., Moos, D. and Richards, H.G., 1988. Site 670. Proc. Ocean Drill. Prog., Init. Repts., 109: 203–237.

    Google Scholar 

  • Sinton, J.M., 1979. Petrology of (alpine-type) peridotites from site 395, DSDP leg 45. Initial Rep. Deep Sea Drill. Proj., 45: 595–601.

    Google Scholar 

  • Sleep, N.H., 1969. Sensitivity of heat flow and gravity to the mechanism of sea-floor spreading. J. Geophys. Res., 74: 542–549.

    Article  Google Scholar 

  • Sleep, N.H., 1974. Segregation of magma from a mostly crystalline mush. Geol. Soc. Am. Bull., 85: 1225–1232.

    Article  Google Scholar 

  • Sleep, N.H., 1975. Formation of oceanic crust: some thermal contraints. J. Geophys. Res., 80: 4037–4042.

    Article  Google Scholar 

  • Sloan, H. and Patriat, P., 1992. Kinematics of the North American-African plate boundary between 28° and 29°N during the last 10 Ma: evolution of the axial geometry and spreading rate and direction. Earth Planet. Sei. Lett., 113: 323–341.

    Article  Google Scholar 

  • Small, C. and Sandwell, D.T., 1992. An analysis of ridge axis gravity roughness and spreading rate. J. Geophys. Res., 97: 3235–3245.

    Article  Google Scholar 

  • Sotin, C. and Parmentier, E.M., 1989. Dynamical consequences of compositional and thermal density stratification beneath spreading centers. Geophys. Res. Lett., 16: 835–838.

    Article  Google Scholar 

  • Spiegelman, M. and McKenzie, D., 1987. Simple 2-D models for melt extraction at mid-ocean ridges and island arcs. Earth Planet. Sei. Lett., 83: 137–152.

    Article  Google Scholar 

  • Stein, R.S., Briole, P., Ruegg, J.-C., Tapponnier, P. and Gasse, F., 1991. Comtemporary, holocene, and quaternary deformation of the Asal Rift, Djibouti: implications for the mechanics of slow spreading ridges. J. Geophys. Res., 96: 21789–21806.

    Article  Google Scholar 

  • Stroup, J.B. and Fox, P.J., 1981. Geologic investigations in the Cayman Trough: evidence for thin oceanic crust along the Mid-Cayman Rise. J. Geol., 89: 395–420.

    Article  Google Scholar 

  • Tapponnier, P. and Francheteau, J., 1978. Necking of the lithosphère and mechanics of slowly accreting plate boundaries. J. Geophys. Res., 83: 3955–3970.

    Article  Google Scholar 

  • Thompson, G. and Melson, W.G., 1972. The petrology of oceanic crust across fracture zones in the Atlantic Ocean: evidence of a new kind of seafloor spreading. J. Geol., 80: 526–538.

    Article  Google Scholar 

  • Tiezzi, L.J. and Scott, R.B., 1980. Crystal fractionation in a cumulate gabbro, Mid-Atlantic Ridge, 26°N. J. Geophys. Res., 85: 5438–5454.

    Article  Google Scholar 

  • Tisseau, C. and Tonnerre, T., In preparation. Non steady-state thermal model of slow spreading centers: role of cooling periods and implications for the axial domain.

    Google Scholar 

  • Tolstoy, M., Harding, A.J. and Orcutt, J.A., 1993. Crustal thickness on the Mid-Atlantic Ridge: bull’s eye gravity anomalies and focused accretion. Science, 262: 726–729.

    Article  Google Scholar 

  • Toomey, D.R., Solomon, S.C., Purdy, G.M. and Murray, M.H., 1985. Microearthquakes beneath the median valley of the Mid-Atlantic Ridge near 23°N: hypocenters and focal mechanisms. Geophys. Res. Lett., 90: 5443–5458.

    Article  Google Scholar 

  • Toomey, D.R., Solomon, S.C. and Purdy, G.M., 1988. Microearthquakes beneath the median valley of the Mid-Atlantic Ridge near 23°N: tomography and tectonics. J. Geophys. Res., 93: 9093–9112.

    Article  Google Scholar 

  • Toomey, D.R., Purdy, G.M., Solomon, S.C. and Wilcock, W.S.D., 1990. The three-dimensional seismic velocity structure of the East Pacific Rise near latitude 9°30′N. Nature, 347: 639–645.

    Article  Google Scholar 

  • Tréhu, A.M. and Solomon, S.C, 1983. Earthquakes in the Orozco Transform Zone: seismicity, source mechanisms, and tectonics. J. Geophys. Res., 88: 8203–8225.

    Article  Google Scholar 

  • Vanko, D.A. and Batiza, R., 1982. Gabbroic rocks from the Mathematician Ridge failed rift. Nature, 300: 742–744.

    Article  Google Scholar 

  • Vaslet, N., 1993. Apports des images du sonar latéral SAR à l’étude de la structure fine des dorsales rapides. Implications sur les relations entre tectonique — magmatisme — hydrothermalisme (exemple de la Dorsale Est-Pacifique entre 13°20′N et 11°50′N)., Thesis, Université de Bretagne Occidentale (Brest), 336 pp.

    Google Scholar 

  • Wakita, H., Nagasawa, H., Uyeda, S. and Kuno, H., 1967. Uranium, thorium and potassium contents of possible mantle materials. Geochem. J., 1: 183.

    Article  Google Scholar 

  • Weissel, J.K. and Hayes, D.E., 1974. The Australian-Antartic Discordance: new results and implications. J. Geophys. Res., 79: 2579–2587.

    Article  Google Scholar 

  • Whitehead, J.A., Dick, H.J.B. and Schouten, H., 1984. A mechanism for magmatic accretion under spreading centres. Nature, 312: 146–148.

    Article  Google Scholar 

  • Wilcock, W.S.D., Purdy, G.M., Solomon, S.C., DuBois, D.L. and Toomey, D.R., 1992. Microearthquakes on and near the East Pacific Rise, 9°-10°N. Geophys. Res. Lett., 19: 2131–2134.

    Article  Google Scholar 

  • Wolfe, C.J., Purdy, G.M., Toomey, D.R. and Solomon, S.C., 1993. FARA microearthquake experiments II: results from the Mid-Atlantic Ridge at 29°N. Eos, Trans. AGU, 74: 601.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Tisseau, C., Tonnerre, T. (1995). Non Steady-State Thermal Model of Spreading Ridges: Implications for Melt Generation and Mantle Outcrops. In: Vissers, R.L.M., Nicolas, A. (eds) Mantle and Lower Crust Exposed in Oceanic Ridges and in Ophiolites. Petrology and Structural Geology, vol 6. Springer, Dordrecht. https://doi.org/10.1007/978-94-015-8585-9_8

Download citation

  • DOI: https://doi.org/10.1007/978-94-015-8585-9_8

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-4557-7

  • Online ISBN: 978-94-015-8585-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics