Skip to main content

On the Order Monotonicity of the Metric Projection Operator

  • Chapter
Approximation Theory, Wavelets and Applications

Part of the book series: NATO Science Series ((ASIC,volume 454))

Abstract

In this paper we study the order monotonicity of the metric projection P D when the set D is a closed convex set in an ordered Hilbert space or in an ordered uniformly convex Banach space. We indicate also some possible applications of this property.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alber, Ya. I. (1993) Generalized projection operators in Banach spaces: properties and applications, (Preprint) Department of Mathematics, Technion- Israel Institute of Technology

    Google Scholar 

  2. Ando, T. and Amemiya I. (1965) Almost everywhere convergence of prediction sequences in L p (1 < p <∞, Wahrscheinlichkeitstheorie verw. Geb. 4, 113–120.

    Article  MathSciNet  MATH  Google Scholar 

  3. Baiocchi, C. and Capelo, A. (1984) Variational and Quasivariational Inequalities. Applications to Free-Boundary Problems, John Wiley and Sons.

    MATH  Google Scholar 

  4. Bauschke, H. H. and Borwein, J. M. (1992) On the convergence of von Neumanns alternating projection algorithm for two sets, (Preprint), Faculty of Mathematics, Univ. Waterloo.

    Google Scholar 

  5. Beauzamy, B. (1985) Introduction to Banach spaces and their geometry, North-Holland Amsterdam, New York, Oxford.

    MATH  Google Scholar 

  6. Bernau, S. J. (1993) Isotone projection cones, (Preprint), Dep. Math. Sciences, The Univ. of Texas at El Paso.

    Google Scholar 

  7. Brunk, H. D. (1975) Uniform inequalities for conditional p-means given a σ-lattice, Ann. Prob. 3, 1025–1030.

    Article  MathSciNet  MATH  Google Scholar 

  8. Calvert, B. (1970) Nonlinear evolution equation in Banach lattices, Bull. Amer. Math. Soc. 76, 845–950.

    Article  MathSciNet  MATH  Google Scholar 

  9. Deutsch, Fr. (1992) The method of alternating orthogonal projections, Approximation Theory, Spline Functions and Applications, (Ed. S. P. Singh) Kluwer Academic Publishers, 105–121.

    Chapter  Google Scholar 

  10. Dye, J. M. and Reich, S. (1991) On the unrestricted iteration of projections in Hilbert space, J. Math. Anal. Appl. 156, 101–119.

    Article  MathSciNet  MATH  Google Scholar 

  11. Dykstra, R. L. (1983) An algorithm for restricted least square regression, J. Amer. Statistical Assoc. 78 Nr.384, 837–842.

    Article  MathSciNet  MATH  Google Scholar 

  12. Golomb, M. and Tapia, R. A. (1972) The metric gradient in normed linear spaces, Num. Math. 20, 115–124.

    Article  MathSciNet  MATH  Google Scholar 

  13. Grotzinger, S. J. and Witzgall, C. (1984) Projections onto order simplexes, Appl. Math. Optim. 12, 247–270.

    Article  MathSciNet  MATH  Google Scholar 

  14. Haraux, A. (1977) How to differentiate the projection on a convex set in Hilbert space. Some applications to variational inequalities, J. Math. Soc. Japan 29, 615–631.

    Google Scholar 

  15. Hiriart-Urruty, J. P. (1982) A what points is the projection mapping differentiable? Amer. Math. Monthly 89, 456–460

    Google Scholar 

  16. Holmes, R. B. (1973) Smoothness of certain metric projections on Hilbert spaces, Trans. Amer. Math. Soc. 184, 87–100.

    Article  MathSciNet  Google Scholar 

  17. Isac, G. and Németh, A. B. (1986) Monotonicity of metric projections onto positive cones in order Euclidean spaces, Ark. Math. 46, 568–576 and Corrigendum.

    MATH  Google Scholar 

  18. Isac, G. and Németh, A. B. (1990) Every generating isotone projection cone is latticial and correct, J. Math. Anal. Appl. 147, 53–62.

    Article  MathSciNet  MATH  Google Scholar 

  19. Isac, G. and Németh, A. B. (1990) Isotone projection cones in Hilbert spaces and the complementarity problem, Boll. Un. Math. Ital. 7, 773–802.

    Google Scholar 

  20. Isac, G. and Nérneth, A. B. (1990) Projection methods, isotone projection cones and the complementarity problem, J. Math. Anal. Appl. 153, 258–275.

    Article  MathSciNet  MATH  Google Scholar 

  21. Isac, G. and Németh, A. B. (1992) Isotone projection cones in Euclidean spaces, Ann. Sci. Math. Québec, 16, 35–52.

    MATH  Google Scholar 

  22. Isac, G. (1992) Complementarity Problems, Lecture Notes in Math., Springer-Verlag Nr. 1528.

    MATH  Google Scholar 

  23. Isac, G. (1992) Iterative methods for the General Order Complementarity Problem., Approximation Theory, Spline Functions and Applications, (Ed. S. P. Singh), Kluwer Academic Publishers, NATO ASI Series, 365–380.

    Google Scholar 

  24. McCormick, G.P. and Tapia, R. A. (1972) The gradient projection method under mild differentiability conditions, SIAM J. Control 10 Nr. 1, 93–98.

    Article  MathSciNet  MATH  Google Scholar 

  25. Neumann, J. Von (1950) Functional Operators, Vol. II. The Geometry of Orthogonal Spaces (this is a reprint of mimeographed lecture notes first distributed in 1933) Annals of Math. Studies Nr. 22 Princeton Univ. Press.

    MATH  Google Scholar 

  26. Opoitsev, V. I. (1979) A generalization of the theory of monotone and concave operators, Trans. Moscow, Math. Soc. Nr. 2, 243–279.

    Google Scholar 

  27. Parida, J., Sen, A. and Kumar, A. (1988) A linear complementarity problem involving a subgradient, Bull. Austral. Math. Soc. 37, 345–351.

    Article  MathSciNet  MATH  Google Scholar 

  28. Peressini, A. L. (1976) Ordered Topological Vector spaces, Harper & Row, New York, Evanston and London.

    Google Scholar 

  29. Phelps, R. R. (1985) Metric projection and the gradient projection method in Banach spaces, SIAM J. Control Optim. 23, 973–977.

    Article  MathSciNet  MATH  Google Scholar 

  30. Phelps, R. R. (1986) The gradient projection methods using Curry’s step-length” SIAM J. Control Optim. 24 692–699.

    Article  MathSciNet  MATH  Google Scholar 

  31. Robinson, S. M. (1992) Nonsigularity and symmetry for linear normal maps, Math. Programming 62, 415–425.

    Article  Google Scholar 

  32. Robinson, S. M. (1992) Normal maps induced by linear transformations, Math. Oper. Research 17 Nr. 3, 691–714.

    Article  MATH  Google Scholar 

  33. Shapiro, A. (1987) On differentiability of metric projections in R n(I): Boundary case, Proc Amer. Math. Soc. 99, 123–128.

    MathSciNet  MATH  Google Scholar 

  34. Shi, P. (1991) Equivalence of variational inequalities with Wienner-Hoph equation, Proc. Amer. Math. Soc. 111 Nr.2, 339–346.

    Article  MathSciNet  MATH  Google Scholar 

  35. Zarantonello, E. H. (1971) Projections on convex sets in Hilbert spaces and spectral theory, Contribution to Nonlinear Functional Analysis, (Ed. E. H. Zarantonello) Acad Press, New York, 237–424.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Isac, G. (1995). On the Order Monotonicity of the Metric Projection Operator. In: Singh, S.P. (eds) Approximation Theory, Wavelets and Applications. NATO Science Series, vol 454. Springer, Dordrecht. https://doi.org/10.1007/978-94-015-8577-4_23

Download citation

  • DOI: https://doi.org/10.1007/978-94-015-8577-4_23

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-4516-4

  • Online ISBN: 978-94-015-8577-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics