Skip to main content

The Self-Assembly of Redox-Active and Photo-Active Catenanes and Rotaxanes

  • Chapter
Molecular Engineering for Advanced Materials

Part of the book series: NATO ASI Series ((ASIC,volume 456))

Abstract

The science of supramolecular chemistry1 — the chemistry of the noncovalent bond — has developed rapidly in the last twenty five years, since Charles Pederson2 revealed that the formation of macrocyclic polyethers could be templated by the coordination of the initially acyclic polyether precursor to metal cations, which preorganise the ligand such that cyclisation becomes a favourable and competitive process alongside polymerisation. The previous two decades have revealed that there are three concepts that underpin supramolecular science at a fundamental level. They are:

  1. (i)

    self-assembly,3

  2. (ii)

    self-organisation,4 and

  3. (iii)

    self-replication.5

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Lehn, J.M. (1988) Supramolecular chemistry — scope and perspectives (Nobel Lecture), Angew. Chem. Int. Ed. Engl. 27, 89–112; Cram, D.J. (1988) The design of molecular hosts, guest, and their complexes (Nobel Lecture), Angew. Chem. Int. Ed. Engl. 27, 1009–1020.

    Article  Google Scholar 

  2. Pederson, C. J. (1967) Cyclic polyethers and their complexes with metal salts, J. Am. Chem. Soc. 89, 7017–7036; Pederson, C. J. (1988) The discovery of crown ethers (Nobel Lecture), Angew. Chem. Int. Ed. Engl. 27, 1021–1027.

    Article  Google Scholar 

  3. Philp, D. and Stoddart, J.F. (1991) Self-assembly in organic synthesis, Synlett, 445458; Lindsey, J.S. (1991) Self-assembly in synthetic routes to molecular devices. Biological principles and chemical perspectives: A review, New J. Chem. 15, 153180.

    Google Scholar 

  4. Lehn, J.M. (1990) Perspectives in supramolecular chemistry, Angew. Chem. Int. Ed. Engl. 29, 1304–1319; Ringsdorf, H., Schlarb, B., and Venzmer, J. (1988) Molecular architecture and function of polymeric oriented systems: Models for the study of organisation, surface recognition, and dynamics, Angew. Chem. Int. Ed. Engl. 27, 113–158; Ahlers, M., Muller, W., Reichert, A., Ringsdorf, H., and Venzmer, J. (1990) Specific interactions of proteins with functional lipid monolayers — ways of simulating biomembrane processes, Angew. Chem. Int. Ed. Engl. 29, 1269–1285.

    Article  Google Scholar 

  5. Famulok, M., Nowick, J. S., and Rebek, J. Jr (1992) Self-replicating systems, Acta Chem. Scand. 46, 315–324; Orgel, L.E. (1992) Molecular replication, Nature 358, 203–209.

    Article  Google Scholar 

  6. Seebach, D. (1990) Organic synthesis — where now?, Angew. Chem. Int. Ed. Engl. 29, 1320–1367; Whitesides, G. (1990) What will chemistry do in the next twenty years?, Angew. Chem. Int. Ed. Engl. 29, 1209–1218.

    Article  Google Scholar 

  7. Nicolau, K.C. (1993) The battle of calicheamycin, Angew. Chem. Int. Ed. Engl. 32, 1377–1385.

    Article  Google Scholar 

  8. Stryer, L. (1988) Biochemistry, W H Freeman and Company, New York.

    Google Scholar 

  9. Calakos, N., Bennett, M.K., Peterson, K.E., and Schneller, R.H. (1994) Protienprotein interactions contributing to the specificity of intracelullar vesicular trafficing, Science 263, 1146–1152; Horuk, R. (1994) The interleukin-8-receptor family: from chemokimes to malaria, Immunology Today 15, 169–174.

    Article  Google Scholar 

  10. Hamilton, A. D. (1990) Molecular recognition: Design and synthesis of artificial receptors employing directed hydrogen bonding interactions, J. Chem. Ed. 67, 821828; Aakeroy, C. B. and Seddon, K.R. (1993) The hydrogen bond and crystal engineering, Chem. Soc. Revs 22, 397–407.

    Google Scholar 

  11. Jubian, V., Dixon, R.P., and Hamilton, A.D. (1992) Molecular recognition and catalysis. Acceleration of phosphodiester cleavage by a simple hydrogen-bonding receptor, J. Am. Chem. Soc. 114, 1120–1121.

    Article  CAS  Google Scholar 

  12. Ichikawa, Y., Halcomb, R.L., and Wong, C.-H. (1994) Sticky Solutions, Chem. Br. 30, 117–121; Giannis, A. (1994) The sialyl lewisx group and its analogues as ligands for selectins: chemoenzymatic syntheses and biological functions, Angew. Chem. Int. Ed. Engl. 33, 178–180; Holmskov, U., Maihotra, R., Sim, R.B., and Jensenius, J.C. (1994) Collectins: collagenous C-type lectins of the innate immune defense system, Immunology Today 15, 67–73.

    Article  Google Scholar 

  13. Ahuja, R.C., Caruso, P.-L., Möbius, D., Wildburg, G., Ringsdorf, H., Philp, D., Preece, J.A., and Stoddart J.F. (1993) Molecular organisation via ionic interactions at interfaces, Langmuir 9, 1534–1544.

    Article  CAS  Google Scholar 

  14. Zasadzinski, J.A., Viswanathan, R., Masden, L., Garnaes, J., and Schwartz, D.K. (1994) Langmuir-Blodgett Films, Science 263, 1726–1733.

    Article  CAS  Google Scholar 

  15. Nowick, J.S., Cao, T., and Noronha, G. (1994) Molecular recognition between uncharged molecules in aqueous micelles, J. Am. Chem. Soc. 116, 3285–3289.

    Article  CAS  Google Scholar 

  16. Krafft, M.-P., Giulieri, F., and Riess, J.G. (1993) Can single chain perfluoroalkylated amphiphiles alone form vesicles and other organised supramolecular systems? Angew. Chem. Int. Ed. Engl. 32, 741–743.

    Article  Google Scholar 

  17. Ashton, P.R., Joachimi, D., Spencer, N., Stoddart, J.F., Tschierske, C. White, A.J.P., Williams, D.J., and Zab, K. (in press) A new class of novel macrocyclic mesogens, Angew. Chem. Im. Ed. Engl. 33.

    Google Scholar 

  18. Ahuja, R. C., Caruso, P.-L., Möbius, D, Paulus, W., Ringsdorf, H., and Wildburg, G. (1993) Formation of molecular strands by hydrogen bonds at the gas-water interface: molecular recognition and quantitative hydrolysis of barbituric acid lipids, Angew. Chem. Int. Ed Engl. 32, 1033–1036.

    Article  Google Scholar 

  19. Chang, S.-K. and Hamilton, A.D. (1988) Molecular recognition of biologically interesting substrates: synthesis of an artificial receptor for barbiturates employing six hydrogen bonds, J. Am. Chem. Soc. 110, 1318–1319.

    Article  CAS  Google Scholar 

  20. Watson, J.D. and Crick, F.H.C. (1953) Molecular structure of nucleic acids, Nature 171, 737–738.

    Article  CAS  Google Scholar 

  21. Bachmann, P.A., Luisi, P.L., and Lang J. (1992) Autocatalytic self-replicating micelles as models for prebiotic structures, Nature 357, 57–59; Hoffmann, S. (1992) Artificial self-replicating systems, Angew. Chem. Int. Ed. Engl. 31, 10131016.

    Google Scholar 

  22. Terfort, A. and von Kiedrowski, G. (1992) Self-replication by condensation of 3amino-benzamides and 2-formylphenoxyacetic acids, Angew. Chem. Int. Ed. Engl. 31, 654–656.

    Article  Google Scholar 

  23. Feynman, R.P. (1960) The wonders that await the micro-microscope, Sat. Rev. 43, 45–47.

    Google Scholar 

  24. Carter, F.L. (1984) The molecular device computer: Point of departure for large scale cellular automata, Physica 10D, 175–194.

    Google Scholar 

  25. Langton, C.G. (1989) Arificial Life, Addison-Wesley, Redwood City, CA.

    Google Scholar 

  26. Meyerson, B.S., (1994) High-speed silico-germanium electronics, Sci. Am. March, 42–47.

    Google Scholar 

  27. Moffat, A.S., (1990) Engineering at the lower limits of size, Mosaic 21, 30–40.

    Google Scholar 

  28. Stoddart, J.F. (1992) Whither and thither molecular machines, Chem. Aust. 59, 576–577; Amabilino, D.B. and Stoddart, J.F. (1994) Molecules that build themselves, New Scientist 19 Feb 1994, No 1913, 25–29.

    Google Scholar 

  29. Drexler, K.E. (1990) Engines of Creation, Fourth Estate, London; Drexler, K.E. (1992) Nanosystems: Molecular Machinery, Manufacturing and Computation, Wiley, New York; Drexler, K.E. (1994) Molecular nanomachines: physical principles and implementation stratergies, Annu. Rev. Biophys. Struct. 23, 377405; Merkle, R.C. (1991) Computational Nanotechnology, Nanotechnology 2, 134–141; Merkle, R.C. (1993) A proof about molecular bearings, Nanotechnology 4, 86–90.

    Google Scholar 

  30. Ashton, P.R., Slawin, A.M.Z., Spencer, N., Stoddart, J.F., and Williams, D.J. (1987) Complex formation between bisparaphenylene-(3n+4)-crown-n-ethers and the paraquat and diquat dications, J. Chem. Soc., Chem. Commun., 1066–1068.

    Google Scholar 

  31. Allwood, B.L., Spencer, N., Shahriari-Zavareh, H., Stoddart, J.F., and Williams, D.J. (1987) Complexation of paraquat by a bisparaphenylene-34-crown-10 derivative, J. Chem. Soc., Chem. Commun., 1064–1066.

    Google Scholar 

  32. Odell, B., Reddington, M.V., Slawin, A.M.Z., Stoddart, J.F., and Williams, D.J. (1988) Bisparaquat(1,4)cyclophane. A tetracationic multipurpose receptor, Angew. Chem. Int. Ed. Engl. 27, 1547–1550.

    Article  Google Scholar 

  33. Ashton, P.R., Odell, B., Reddington, M.V., Slawin, A.M.Z., Stoddart, J.F., and Williams, D.J. (1988) Isostructural alternatively-charged receptor stacks. The inclusion complexes of hydroquinol and catchecol dimethyl ethers with bisparaquat(1,4)cyclophane, Angew. Chem. Int. Ed Engl. 27, 1550–1553.

    Article  Google Scholar 

  34. Brown, C.L., Philp, D., and Stoddart, J.F. (1991) The template directed synthesis of a rigid tetracationic cyclophane, Synlett, 462–463.

    Google Scholar 

  35. Brown, C.L., Philp, D., and Stoddart, J.F. (1991) The self-assembly of a [2]catenane, Synlett, 459–462.

    Google Scholar 

  36. Anelli, P.L., Ashton, P.R., Ballardini, R., Balzani, V., Delgado, M., Gandolfi, M.T., Goodnow, T.T., Kaifer, A.E., Philp, D., Pietraszkiewicz, M., Prodi, L., Reddington, M.V., Slawin, A.M.Z., Spencer, N., Stoddart, J.F., Vicent C., and Williams, D.J. (1992) Molecular meccano 1: [2]Rotaxanes and a [2]catenane made to order, J. Am. Chem. Soc. 114, 193–218.

    Article  CAS  Google Scholar 

  37. Blower, M., Philp, D., Spencer, N., Stoddart, J.F., Tolley, M. S., Ballardini, R., Ciano, M., Balzani, V., Gandolfi, M.T., Prodi, L., and McLean, C.H. (1993) The control of translational isomerism in catenated structures, New J. Chem. 17, 689695.

    Google Scholar 

  38. Ashton, P.R., Ballardini, R., Balzani, V., Gandolfi, M.T., Marquis, D.J.-F., Perez-Garcia, L., Prodi, L., Stoddart, J.F., and Venturi, M. (1994) The self-assembly of controllable [2]catenanes, J. Chem. Soc., Chem. Commun., 177–180.

    Google Scholar 

  39. Vögtle, F., Muller, W.M., Muller, U., Bauer, M., and Rissanen, K. (1993) Photoswitchable catenanes, Angew. Chem. Int. Ed Engl. 32, 1295–1297.

    Article  Google Scholar 

  40. Gunter, M.J., Johnston, M.R. (1994) Porphyrin [2]catenanes–dynamic control through protonation, J. Chem. Soc., Chem. Commun., 829–830.

    Google Scholar 

  41. Lu, T., Zhang, L., Gokel, G.W., and Kaifer, A.E. (1993) The first surface attached catenane: self-assembly of a two-component monolayer, J. Am. Chem. Soc. 115, 2542–2543.

    Article  CAS  Google Scholar 

  42. Ashton, P.R., Belohradsky, M., Philp, D., Spencer, N., and Stoddart, J.F. (1993) The self-assembly of [2]- and [3]-rotaxanes, J. Chem. Soc., Chem. Commun., 1274–1277.

    Google Scholar 

  43. Ashton, P. R., Belohradsky, M., Philp, D., and Stoddart, J. F. (1993) Slippage–an alternative approach for assembling [2]rotaxanes, J. Chem. Soc., Chem. Commun., 1269–1274.

    Google Scholar 

  44. Preece, J. A. and Stoddart, J. F., Unpublished results.

    Google Scholar 

  45. Ueno, A., (1993) Fluorescent sensors and color-change indicators for molecules, Adv. Mat. 5, 132–134.

    Article  CAS  Google Scholar 

  46. Anelli, P.R., Spencer, N., and Stoddart, J.F. (1991) A molecular shuttle, J. Am. Chem. Soc. 113, 5131–5133.

    Article  CAS  Google Scholar 

  47. Ashton, P.R., Bissell, R.A., Spencer, N., Stoddart, J.F., and Tolley, M.S. (1992) Towards controllable molecular shuttles -1, Synlett, 914–918.

    Google Scholar 

  48. Ashton, P.R., Bissell, R.A., Gorski, R., Philp, D., Spencer, N., Stoddart, J.F., and Tolley, M.S. (1992) Towards controllable molecular shuttles–2, Synlett, 919–922.

    Google Scholar 

  49. Ashton, P.R., Bissell, R.A., Spencer, N., Stoddart, J.F., and Tolley, M.S. (1992) Towards controllable molecular shuttles–3, Synlett, 923–926.

    Google Scholar 

  50. Bissell, R.A., Cordova, E., Kaifer, A.E., and Stoddart, J.F. (1994), A chemically and electrochemically switchable molecular shuttle, Nature 369, 133–137.

    Article  CAS  Google Scholar 

  51. Benniston, A.C. and Harriman A., and Lynch, V.M. (1994) Photo active [2]rotaxanes formed by multiple n-stacking, Tetrahedron Lett. 35, 1473–1476.

    Article  CAS  Google Scholar 

  52. Chambron, J.-C., Chardon-Noblat, S., Harriman, A., Heitz, V., and Sauvage, J. P. (1993) Photoinduced electron transfer in multiporphyrin clusters and rotaxanes, Pure and Appl. Chem. 65, 2343–2349; Ashton, P. R., Johnston, M. R., Stoddart, J.F., Tolley, M.S., and Wheeler, J.W. (1992) The template-directed synthesis of porphyrin-stoppered [2]rotaxanes, J. Chem. Soc., Chem. Commun., 1128–1131.

    Google Scholar 

  53. Benniston, A. C. and Harriman A. (1993) A light-induced molecular shuttle based on a [2]rotaxane-derived triad, Angew. Chem. Int. Ed. Engl. 32, 1459–1461.

    Article  Google Scholar 

  54. Ballardini, R., Balzani, V., Gandolfi, M.T., Prodi, L., Ventura, M., Philp, D., Ricketts, H.G., and Stoddart, J.F. (1993) Photochemically driven molecular machine, Angew. Chem. Int. Ed. Engl. 32, 1301–1303.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Preece, J.A., Stoddart, J.F. (1995). The Self-Assembly of Redox-Active and Photo-Active Catenanes and Rotaxanes. In: Becher, J., Schaumburg, K. (eds) Molecular Engineering for Advanced Materials. NATO ASI Series, vol 456. Springer, Dordrecht. https://doi.org/10.1007/978-94-015-8575-0_1

Download citation

  • DOI: https://doi.org/10.1007/978-94-015-8575-0_1

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-4521-8

  • Online ISBN: 978-94-015-8575-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics