Skip to main content

Linear Viscoelasticity

The Search for Patterns in the Relaxation of Polymer Melts and Gels

  • Chapter
Rheological Fundamentals of Polymer Processing

Part of the book series: NATO ASI Series ((NSSE,volume 302))

Abstract

The linear viscoelasticity of a polymer is uniquely described by the classical theory of linear viscoelasticity. Material properties are contained in the relaxation time spectrum which depends on the molecular details. To address an unsolved problem in rheology, the search for relations between molecular architecture and relaxation, we propose to start out with the most simple molecular architecture and later add molecular details. This proposal bases on the observation that polymers with the mostt simple geometry (long linear flexible chains of uniform length) relax with a universal relaxation time spectrum which is self-similar. Its parameters are a generic expression of chain flexibility, rotational energies of the chemical bonds, atomic masses involved in the molecular motion, molecular interaction forces, etc. of the chemical building blocks. We assume that these generic parameters can be considered fixed for each chemistry and that only few new parameters have to be added when proceeding to architectures which are branched or distributed in size (polydisperse). In a similar fashion one may add specific effects of solvents, molecular interactions, or phase transition (not elaborated here). Generic parameters are given for polystyrene, a polybutadiene, and a polyvinylmethylether.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 389.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 499.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 499.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Antonietti M, Fölsch KJ, Sillescu H, Pakula T (1989) Micronetworks by endlinking of polystyrene II: dynamic mechanical behavior and diffusion experiments in bulk. Macromolecules 22, 2812

    Article  ADS  Google Scholar 

  • Bates FS (1984) Block copolymer near the microphase separation transition: linear dynamic mechanical properties, Macromolecules 17, 2607

    Article  ADS  Google Scholar 

  • Baumgärtel M, De Rosa M, Machado J, Masse M, Winter HH (1992) The relaxation time spectrum of nearly monodisperse polybutadiene melts, Rheol. Acta 31, 75

    Article  Google Scholar 

  • Baumgärtel M, Schausberger A,Winter HH (1990) The relaxation of polymers with linear flexible chains of uniform length Rheol. Acta 29, 400

    Article  Google Scholar 

  • Baumgärtel M, Winter HH (1989) Determination of the discrete relaxation time spectrum from dynamic mechanical data Rheol. Acta 28, 511

    Article  Google Scholar 

  • Baumgärtel M, Winter HH (1992) Interrelation between continuous and discrete relaxation time spectra, J. Non-Newtonian Fluid Mech. 44, 15–36

    Article  Google Scholar 

  • Bird RB, Armstrong R, Hassager O, Curtiss CF (1987) Dynamics of Polymeric Liquids, Vol. 2, J. Wiley, New York

    Google Scholar 

  • Cates ME (1985) Brownian dynamics of self-similar macromolecules, J. de Physique 46, 1059–1077

    Article  MathSciNet  Google Scholar 

  • Chambon F, Winter HH (1985) Stopping of the crosslinking reaction in a PDMS polymer at the gel point Polym. Bull. 13, 499

    Article  Google Scholar 

  • Chung CI and Gale JC (1976) Newtonian behavior of a SBS block copolymer, J. Polym. Sci., Polym. Phys. Ed. 14, 1149

    Article  ADS  Google Scholar 

  • Chung CI, Lin MI (1978) Nature of melt rheological transition in SBS copolymers J. Polym. Sci., Polym. Phys. Ed. 16, 545

    Article  ADS  Google Scholar 

  • de Gennes PG (1979) Scaling Concepts in Polymer Physics, Cornell University Press, Ithaca

    Google Scholar 

  • des Cloizeaux J (1990) Relaxation and viscosity anomaly of long entangled polymers: time dependent relaxation, Macromolecules 23, 4678–4687

    Article  ADS  Google Scholar 

  • Doi M (1974) Molecular theory of the viscoelastic properties of concentrated polymer solutions, Chem. Phys. Lett. 26, 269–272

    Article  ADS  Google Scholar 

  • Doi M, Edwards SF (1986) The Theory of Polymer Dynamics Clarendon Press, Oxford

    Google Scholar 

  • Emri I, Tschoegl NW (1994) Generating line spectra from experimental responses Rheologica Acta 32, 311–327

    Article  Google Scholar 

  • Ferry JD (1980) Viscoelastic Properties of Polymers. 3rd ed. Wiley, New York

    Google Scholar 

  • Gouinlock EV, Porter RS (1977) Linear dynamic mechanical properties of an SBS block copolymer, Polym. Eng. Sci. 17, 535

    Article  Google Scholar 

  • Graessley WW (1974) The entanglement concept in rheology Adv. Polym. Sci. 16, Springer Verlag Heidelberg

    Google Scholar 

  • Graessley WW, Roovers J (1979) Melt rheology of four-arm and six-arm star polystyrenes, Macromolecules 12, 959

    Article  ADS  Google Scholar 

  • Granick S, Reiter G, Demirel L, Cai L, Reanasky J (1993) Presentation at 2nd Int. Discussion Meeting on Relaxation in Complex Systems, 28/6–8/7/93, Alicante, Spain.

    Google Scholar 

  • Gross B (1953) Mathematical structure of the theories of viscoelasticity, Hermann and Cie, Paris

    MATH  Google Scholar 

  • Honerkamp J, Weese J (1989) Determination of the relaxation spectrum by a regularization mehtod, Macromolecules 22, 4372–4377

    Article  ADS  Google Scholar 

  • Jackson J, De Rosa M, Winter HH (1994) Molecular weight dependence of relaxation time spectra for the entanglement and flow behavior of monodisperse linear flexible polymers, Macromolecules 27, 2426

    Article  ADS  Google Scholar 

  • Jackson J, Winter HH (1994) Entanglement and flow behavior of bidisperse blends of polystyrene and polybutadiene Macromolecules under review

    Google Scholar 

  • Kamath VM, Mackley MR (1990) The determination of polymer relaxation moduli and memory functions using integral transforms, J. Non-Newt. Fluid Mech. 32, 119–144

    Article  Google Scholar 

  • Kimura S, Osaki K, Kurata M(1981) J. Rheology 32, 151

    Google Scholar 

  • Koppi KA, Tirrell M, Bates FS, Almdal K, Colby RH (1992) Lamellae orientation in dynamically sheared diblock copolymer melts. J. Phys. II France 2, 1941:1959

    Google Scholar 

  • Kurata M, Osaki K, Einaga Y, Sugie T (1974) Effect of molecular weight distribution on viscoelastic properties of polymers J. Polym. Sci., Polym. Phys Ed. 12, 849

    Article  ADS  Google Scholar 

  • Larson RG, (1985) Constitutive relations for polymeric materials with power law distributions of relaxation times. Rheol. Acta 24, 327–334;

    Article  Google Scholar 

  • Laun HM (1978) Description of non-linear shear behavior of a low density polyethylene melt by means of an experimentally determined strain-dependent memory function, Rheologica Acta 17, 1–15

    Article  Google Scholar 

  • Mani S, Malone MF, Winter HH (1992) Influence of phase separation on the linear viscoelastic behavior of a miscible polymer blend J. Rheology 36, 1625

    Article  ADS  Google Scholar 

  • Marin G, Graessley WW (1977) Viscoelastic properties of high molecular weight polymersin the molten state. I. Study of Marrow Molecular weight distribution samples Rheol. Acta 16, 527

    Article  Google Scholar 

  • Mead DW (1994) Numerical interconversion of linear viscoelastic material functions. J. Rheology 38, 1769–1795

    Article  ADS  Google Scholar 

  • Muthukumar M (1985) J. Chem. Phys. 83, 3161

    Article  ADS  Google Scholar 

  • Onogi S, Masuda T, Kitagawa K (1970) Rheological properties of anionic polystyrenes. I. Dynamic viscoelasticity of narrow-distributed polystyrenes, Macromolecules 3, 109

    Article  ADS  Google Scholar 

  • Pipkin AC (1986) Lectures on Viscoelasticity Theory, 2nd Ed., Springer Verlag, Heidelberg

    Book  Google Scholar 

  • Plazek DJ (1960) Dynamic mechanical and creep properties of a 23% cellulose nitrate solution; Andrade creep in polymeric systems, J. Colloid Sci. 15, 50–75

    Article  Google Scholar 

  • Plazek DJ (1966) J. Polymer Sci. A-2, 745

    Google Scholar 

  • Plazek DJ, Tan V, O’Rourke VM (1964) Rheol. Acta 13, 367

    Article  Google Scholar 

  • Prest W, Porter R (1973) The effects of high-molecular components on the viscoelastic properties of polystyrene, Polym. J. 4, 154

    Article  Google Scholar 

  • Roovers J, Graessley WW (1981) Macromolecules 14, 766

    Article  ADS  Google Scholar 

  • Rouse PE (1953) A theory of linear viscoelastic properties of dilute solutions of coiling polymers, J. Chem. Phys. 21, 1272–1280

    Article  ADS  Google Scholar 

  • Rubinstein M, Zurek S, McLeish TCB, Ball RC (1990) Relaxation of entangled polymers at the classical gel point, J. Phys. France 51, 757–775

    Article  Google Scholar 

  • Schausberger A, Schindlauer G, Janeschitz-Kriegl H (1985) Linear elasticovisvous properties of molten standard polystyrenes. I. Presentation of Complex moduli; role of short range structural parameters Rheol. Acta 24, 220

    Article  Google Scholar 

  • Stadler R, Freitas LL, Krieger V, Klotz S (1988) Polymer 29, 1643

    Article  Google Scholar 

  • Tobolsky AV (1960) Properties and Structures of Polymers, Wiley New York

    Google Scholar 

  • Tobolsky AV, McLoughlin JR (1952) J. Polym Sci. 8, 543

    Article  ADS  Google Scholar 

  • Winter HH (1987) Evolution of rheology during chemical gelation, Progr. Coll. Polym. Sci. 75, 104

    Article  Google Scholar 

  • Winter HH (1994) The occurrence of self-similar relaxation in polymers J. Non Crystalline Solids 172–174, 1158–1167

    Article  Google Scholar 

  • Winter HH, Baumgärtel M, Soskey P (1993) A parsimonious model for viscoelastic liquids and solids, in A. A. Collyer, Ed. Techniques in Rheological Measurement, Chapman & Hall, London

    Google Scholar 

  • Winter HH, Chambon F (1986) Analysis of linear viscoelasticity of a crosslinking polymer at the gel point J. Rheology 30, 367

    Article  ADS  Google Scholar 

  • Winter HH, Izuka A, De Rosa ME (1994) Experimental observation of the molecular weight dependence of the critical exponents for the rheology near the gel point, Polymer Gels and Networks 2, 239–245

    Article  Google Scholar 

  • Zimm BH (1956) Dynamics of polymer molecules in dilute solution: viscoelasticity, flow birefringence and dielectric loss. J. Chem. Phys. 24, 269–278

    Article  MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Winter, H.H., Jackson, J. (1995). Linear Viscoelasticity. In: Covas, J.A., Agassant, J.F., Diogo, A.C., Vlachopoulos, J., Walters, K. (eds) Rheological Fundamentals of Polymer Processing. NATO ASI Series, vol 302. Springer, Dordrecht. https://doi.org/10.1007/978-94-015-8571-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-94-015-8571-2_3

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-4637-6

  • Online ISBN: 978-94-015-8571-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics