Skip to main content

Reactive Extrusion

A New Tool for the Diversification of Polymeric Materials

  • Chapter
Rheological Fundamentals of Polymer Processing

Part of the book series: NATO ASI Series ((NSSE,volume 302))

Abstract

Reactive extrusion (REX) is a manufacturing method that combines the traditionally separated chemical processes (polymer synthesis and/or modification) and extrusion (melting, blending, structuring, devolatilization and shaping) into a single process carried out onto an extruder. The first reactions of chemical modification of polymers were carried out on natural products, like cellulose nitration by Braconnot in 1833 or natural rubber vulcanization by Goodyear in 1839. Besides these examples based on chemically modified natural macromolecules, it is worthwhile noticing how many possibilities exist for chemically modifying synthetic polymers, as indicated in the exhaustive review published by Fettes (1). Generally, the use of solvents or dispersed media facilitates the control and adjustment of reactivity between polymers and other components of the system. However, the low concentration of polymer (around 10 wt.%) and the related separation and purification processes, which have a great influence on the final costs of modified polymers, are among the main disadvantages of reactions conducted in solvent media. In order to avoid these difficulties, the process using an extruder as a chemical reactor, within a residence time of a few minutes and in the absence of solvent allows to obtain a modified (co)polymer in a ready-to-use form at the dye. The main medium is the molten polymer, with an associated polarity related to its chemical composition, and the corresponding reaction and processing parameters are very different from those in solution. Adjustment of the reactivity requires specific basic research on the kinetical behaviour under these conditions, even if the main reaction is well known in classical organic or polymer chemistry (2).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 389.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 499.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 499.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. E.M. Fettes, in “Chemical Reactions of Polymers” ed. H. Mark-Interscience Publishers, New-York, 1964.

    Google Scholar 

  2. D.C. Sherrington, “Encycl. of Polymer Science & Engineering”, ed. J.I. Kroschwitz, Wiley, 1988, 14, p.101–169.

    Google Scholar 

  3. J. A. Biesenberger and D.H. Sebastian, in “Principles of Polymerisation Engineering” ed.Wiley, New-York, 1983.

    Google Scholar 

  4. Z.N. Frund, Plast. Compounding, Sept. Oct. 1986, 9 (5), p. 26–38.

    Google Scholar 

  5. S.B. Brown and CM. Orlando, in “Encyclopedia of Polymer Science & Engineering”, ed. J.I. Kroschwitz, Wiley, 1988, 14, p.169–189.

    Google Scholar 

  6. S.B. Brown, in “Polymer Blends and Alloys”,ed. A.V. Patsis, State University of New-York, 1990, p. 23–81 & 83–116.

    Google Scholar 

  7. C. Tzoganakis, Adv. Polym. Technol., 1989, 9, p.321–330.

    Google Scholar 

  8. J.L. White, W. Szydlowski, K. Min and M. Kim, Adv. Polym. Technol., 1987, 7, p. 295–332.

    Article  Google Scholar 

  9. H. Hermann, in “Polymerreaktionen und reaktives Aufbereiten in kontinuierlichen Maschinen”, ed. VDI-Verlag, Düsseldorf, 1988, p.l.

    Google Scholar 

  10. R. Sredharan and I.M. Mathai, J. Sei. Ind. Res., 1974, 33, p. 178.

    Google Scholar 

  11. D.C. Wahrmund, D.R. Paul and J.W. Barlow, J. Appl. Polym. Sei., 1978, 22, p. 2155–2164.

    Article  Google Scholar 

  12. A.M. Kotliar, J. Polym. Sci.-Macromol. Rev., vol.16, p. 367–395, (1981).

    Article  Google Scholar 

  13. J. Devaux, P. Godard and J.P. Mercier, Polym.Eng. Sei., 1982, 22, p. 229–233.

    Article  Google Scholar 

  14. R. S. Porter, Thermochimica, 1988, 134 (part 1), p. 251.

    Article  Google Scholar 

  15. M. Lambla, J. Druz and F. Mazeres, Plast. Rubber Proces. Appl., 1990, 13, p. 75–79.

    Google Scholar 

  16. H. Staudinger, Ber., 1930, 63, p. 931.

    Google Scholar 

  17. M. Pike and W.F. Watson, J. Polym. Sei., 1952, 9, p. 229.

    Article  ADS  Google Scholar 

  18. W. Kautzmann and H. Eyring, J. Am. Chem. Soc., 1940, 62, p.3113.

    Article  Google Scholar 

  19. N.K. Baremboim, Mechanochemistry of Polymers, 1961.

    Google Scholar 

  20. K. Arisawa and R.S. Porter, J. Appl. Polym. Sei., 1970, 14, p. 879–896.

    Article  Google Scholar 

  21. M. Dorn, Adv. Polym. Technol., 1985, 5, p. 87–97.

    Article  Google Scholar 

  22. H. Schott and W.S. Kaghan, Soc. Plast. Eng. Trans., 1963, 3(2), p. 145–151.

    Google Scholar 

  23. J. C. Staton, J.P. Keller and R.C. Kowalski (Esso Research & Engineering Co.), FR Pat. 1.547.299, US Pat. 3, 551, 943 (1968).

    Google Scholar 

  24. R.C. Kowalski, J.W. Harrison, J.C. Staton and J.P. Keller (Esso Research & Engineering Co.), US. Pat. 3,563,972 & 3, 608, 001 (1971).

    Google Scholar 

  25. A.T. Watson, H.L. Wilder, K.W. Bartz and R.A. Steinkamp (Exxon Research and Eng. Co.), DE Pat. 2 454 650 (1975).

    Google Scholar 

  26. K. Babba, T. Shiota, K. Murakami and K. Ono (Sumitomo Chemical Co.) JPPat. 48/79 851 (1973).

    Google Scholar 

  27. D. Suwanda, R. Lew and S.T. Blake, J. Appl. Polym. Sei., 1988, 35, p.1019–1032.

    Article  Google Scholar 

  28. C. Tzoganakis, J. Vlachopoulos and A. E. Hamielec, Polym. Eng. Sei., 1988, 28, p. 170–180

    Article  Google Scholar 

  29. C. Tzoganakis, J. Vlachopoulos and A. E. Hamielec, Chem. Eng. Prog., Nov. 1988, 84(11), p. 47–49.

    Google Scholar 

  30. C. Tzoganakis, Y. Tang, J. Vlachopoulos and A.E. Hamielec, Polym. Plast. Technol. Eng., 1989, 28, p. 319–350.

    Article  Google Scholar 

  31. A. Pabedinskas, W.R. Cluett and S.T. Balke, Polym. Eng. Sei., 1989, 29, p. 993–1003.

    Article  Google Scholar 

  32. H.G. Scott (Midland Silicones), FR Pat. 2.030.899 (1970).

    Google Scholar 

  33. H.G. Scott and J.F. Humphries, Mod. Plast., 1973, 50(3), p. 82–87.

    Google Scholar 

  34. B.LC.C. Ltd. and Maillefer S.A., NL Pat. 75/14 222, US Pat. 4, 117, 195 (1976).

    Google Scholar 

  35. S. Ultsch and H.G. Fritz, Plast. Rubber Proces. AppL, 1990, 13, p. 81–91.

    Google Scholar 

  36. Fujikura Cable Work Ltd., JP Pat. 60/6045 (1985).

    Google Scholar 

  37. S. Ultsch and H.G. Fritz, Kunststoffe, 1989, 79, p. 1051–56

    Google Scholar 

  38. N.G. Gaylord and R. Mehta, J. Polym. Sei. -Polym. Chem. Ed., 1988, 26, p. 1189–1198 & 1903–1909.

    Article  Google Scholar 

  39. J.J. Hat, Thèse de Doctorat, Univ. de Strasbourg I, (1989)

    Google Scholar 

  40. G.-H. Hu, J.J. Fiat & M. Lambla, Makromol. Chem., Macromol. Symp., 1993, 79, p.137–157.

    Article  Google Scholar 

  41. G.-H. Hu, JJ. Fiat & M. Lambla, “S.P.E. Proc. ANTEC” (1994)

    Google Scholar 

  42. Y. J. Sun, G.-H. Hu and M. Lambla; Accepted by “Die Angew. Makromol. Chem.”

    Google Scholar 

  43. R. C. Kowalski and N.F. Newman (Exxon Research & Eng.Co.) EP Pat.76 173, US Pat.4,384,072 + 4,486,575 + 4,501,859 (1983) & EP Pat. 124 278, US Pat.4,548,995 (1984) & EP Pat. 124 279 (1984).

    Google Scholar 

  44. N.F. Newman and R.C. Kowalski (Exxon Research & Eng. Co.), BR Pat. 83/1 822 (1984),(Chem. Abstr. 101–172842).

    Google Scholar 

  45. C. Mijangos, A. Martinez and A. Michel, Europ. Polym. J., 1986, 22, p. 417–421.

    Article  Google Scholar 

  46. K. Mori, Y. Nakamura and T. Hayakari, Angew. Makromol. Chem., 1978, 66,

    Google Scholar 

  47. p. 169–180.

    Google Scholar 

  48. A. Michel, M. Gonnu and E. Koerper, Polymer Processing Society, 3rd Ann. Meet., Abs. 1/9, Stuttgart, 1987.

    Google Scholar 

  49. C. Song, K. Li and S. Li, Intl. Polym. Process., 1987, 2, p. 83–87.

    Google Scholar 

  50. J. A. Sneller, Modern Plast. Int’l, Aug. 1985, 15(8), p. 42–46.

    Google Scholar 

  51. Modern Plast. Int’l, Apr. 1987, 17(4), p. 27–30.

    Google Scholar 

  52. CS. Tucker and R.J. Nichols, Plast. Eng., May 1987, 43(5), p. 27–30.

    Google Scholar 

  53. M. Lambla, Polym. Process Eng., 1988, 5, p. 297–315.

    Google Scholar 

  54. R. M. Kopchik (Rohm and Haas Co.), DE Pat. 2 652 118, US Pat. 4,246,374 (1977)

    Google Scholar 

  55. Toray Industries Inc., JP Pat. 58/84855 (1983).

    Google Scholar 

  56. M.P. Hallden-Abberton, N.M. Bortnick, L.A. Cohen, W.T. Freed and H.C. Formuth (Rohm and Haas Co.), EP. Pat. 216 505, US Pat. 4,727,117 (1987).

    Google Scholar 

  57. O. Koch and H. Waniczek (Bayer AG.), DE. Pat. 3430802 (1986)

    Google Scholar 

  58. L. G. Bourland, M.E. London and T.A. Cooper, in “Reactive Processing: Practice and Possibilities” RAPRA Seminar, 1989

    Google Scholar 

  59. M. Raetzsch, U. Hofmann, M. Gebauer, G. Hoffmann, G. Bergmann and H. Schade (VEB), BR Pat. 2,116,981 (1983).

    Google Scholar 

  60. R.L. Saxton (du Pont), US Pat. 4,338,405 (1982).

    Google Scholar 

  61. T. Kumimoto, M. Morikawa, K. Aoki and Y. Urata (Toray Industries Inc.), JP Pat. 47/30932 (1972).

    Google Scholar 

  62. M. Raetzsch, J. Geyer and J. Oswald, DD Pat. 107,938 (1974).

    Google Scholar 

  63. D.M. McClain, B.L. Vest (National Distillers & Chemical Corp.), US Pat. 3,972,865 (1976).

    Google Scholar 

  64. A. Bouilloux, J. Druz and M. Lambla, Polym. Proces. Eng., 1986, 4, p. 235–251.

    Google Scholar 

  65. M. Lambla, J. Druz and A. Bouilloux, Polym. Eng. Sei., 1987, 27, p. 1221–1228.

    Article  Google Scholar 

  66. G.-H. Hu, Y.-J. Sun and M. Lambla, Makromol. Chem., 1993, 194, p. 665–675.

    Article  Google Scholar 

  67. G.-H. Hu and M. Lambla, Polymer, 35, 1994, 3082.

    Article  Google Scholar 

  68. G.-H. Hu, Y. Holl and M. Lambla, J. Polym. Sei., A, 1992, 30, p.625–634.

    Article  Google Scholar 

  69. G.-H. Hu, S. Lorek, Y. Holl and M. Lambla, J. Polym. Sei. A, 1992, 30, p.635–641.

    Google Scholar 

  70. G.-H. Hu, Ph. D. Dissertation, Université Louis Pasteur, Strasbourg France, 1990.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Lambla, M. (1995). Reactive Extrusion. In: Covas, J.A., Agassant, J.F., Diogo, A.C., Vlachopoulos, J., Walters, K. (eds) Rheological Fundamentals of Polymer Processing. NATO ASI Series, vol 302. Springer, Dordrecht. https://doi.org/10.1007/978-94-015-8571-2_20

Download citation

  • DOI: https://doi.org/10.1007/978-94-015-8571-2_20

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-4637-6

  • Online ISBN: 978-94-015-8571-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics