Skip to main content

Part of the book series: Engineering Applications of Fracture Mechanics ((EAFM,volume 14))

Abstract

The results are presented of an experimental post-mortem investigation on concrete fracture surfaces of specimens broken in direct tension. Four numerical methods are implemented and applied to digitized profiles in order to extract their fractal dimension D. On the other hand, not a unique value of D can be defined for each profile but a continuously decreasing fractal dimension with increasing scale length. This implies that the effect of microstructural disorder on the mechanical behavior becomes progressively less important at larger scales, whereas it represents the fundamental feature at smaller scales. The values provided by this analysis are then related to the renormalized fracture energy of the material, in order to explain the well-known size effect on the nominal fracture energy. The multifractal (self-affine) nature of the fracture surfaces of disordered materials produces a dimensional increment with respect to the number 2. Variations in the fractal dimension of fracture surfaces produce variations in the physical dimension of toughness and not, as asserted by some authors, in the measure of toughness.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. B. B. Mandelbrot, The Fractal Geometry of Nature, W. H. Freeman and Company, New York, 1982.

    Google Scholar 

  2. K. Falconer, Fractal Geometry: Mathematical Foundations and Applications, John Wiley and Sons, Chichester, 1990.

    MATH  Google Scholar 

  3. P. D. Panagiotopoulos, “Fractal Geometry in Solids and Structures”, Int. J. Solids and Structures, 29, pp. 2159–2175, 1992.

    Article  MathSciNet  MATH  Google Scholar 

  4. A. A. Griffith, “The Phenomenon of Rupture and Flow in Solids”, Philosophical Transaction of the Royal Society, London, A221, pp. 163–198, 1921.

    Google Scholar 

  5. G. R. Irwin, “Analysis of Stresses and Strains near the End of a Crack Traversing a Plate”, J. Applied Mechanics, 24, pp. 361–364, 1957.

    Google Scholar 

  6. P. Bak, C. Tang and K. Wiesenfeld, “Self-Organized Criticality”, Physical Review A, 38, pp. 364–374, 1988.

    Article  MathSciNet  MATH  Google Scholar 

  7. K. G. Wilson, “Problems in Physics with Many Scales of Length”, Scientific American, (Italian Edition), 23, pp. 140–157, 1979.

    Google Scholar 

  8. B. B. Mandelbrot, D. E. Passoja and A. J. Paullay, “Fractal Character of Fracture Surfaces of Metals”, Nature, 308, pp. 721–722, 1984.

    Article  Google Scholar 

  9. H. Sumiyoshi, S. Matsuoka, K. Ishikawa and M. Nihei, “Fractal Characteristics of Scanning Tunneling Microscopic Images of Brittle Fracture Surfaces on Molybdenum”, JSME International Journal, 35, pp. 449–455, 1992.

    Google Scholar 

  10. S. R. Brown and C. H. Scholz, “Broad Bandwidth Study of the Topography of Natural Rock Surfaces”, J. Geophysical Research, 90, pp. 12575–12582, 1985.

    Article  Google Scholar 

  11. V. E. Saouma, C. C. Barton and N. A. Gamaleldin, “Fractal Characterization of Fracture Surfaces in Concrete”, Engineering Fracture Mechanics, 35, pp. 47–53, 1990.

    Article  Google Scholar 

  12. T. J. Mackin, J. J. Melcholsky, Jr., D. E. Passoja and Y. L. Tsai, “Scaling Concepts Applied to Brittle Fracture”, Proceedings of Symposium W, 1990 Fall Meeting of the Materials Research Society, Boston, pp. 33–36, 1990.

    Google Scholar 

  13. Q. Y. Long, L. I. Suqin and C. V. Lung, “Studies on the Fractal Dimension of a Fracture Surface Formed by Slow Stable Crack Propagation”, J. Applied Physics, 24, pp. 602–607, 1991.

    Google Scholar 

  14. A. Carpinteri, “Fractal Nature of Material Microstructure and Size Effects on Apparent Mechanical Properties”, Mechanics of Materials, to appear.

    Google Scholar 

  15. A. Carpinteri and B. Chiaia, “Fractals, Renormalization Group Theory and Scaling Laws for Strength and Toughness of Disordered Materials”, Proceedings of the PROBAMAT Workshop, NATO ARW930521, Cachan, 1993.

    Google Scholar 

  16. A. Carpinteri, “Plastic Flow Collapse Versus Separation Collapse (Fracture) in Elastic-Plastic Strain-Hardening Structures”, Materials and Structures, 16, pp. 8596, 1983.

    Google Scholar 

  17. A. Carpinteri, “Stress-Singularity and Generalized Fracture Toughness at the Vertex of Reentrant Corners”, Engineering Fracture Mechanics, 26, pp. 143–155, 1987.

    Article  Google Scholar 

  18. B. B. Mandelbrot, “Self-Affine Fractals and Fractal Dimension”, Physica Scripta, 32, pp. 257–260, 1985.

    Article  MathSciNet  MATH  Google Scholar 

  19. H. O. Peitgen and D. Saupe, The Science of Fractal Images, Springer-Verlag, New York, 1988.

    MATH  Google Scholar 

  20. L. F. Richardson, “The Problem of Contiguity: An Appendix of Statistics of Deadly Quarrels”, General System Yearbook, 6, pp. 139–187, 1961.

    Google Scholar 

  21. S. M. Miller, P. C. McWilliams and J. C. Kerkering, “Ambiguities in Estimating Fractal Dimensions of Rock Fracture Surfaces”, Proceedings of the 31st U.S. Symp. Rock Mech., Balkema, Amsterdam, pp. 73–80, 1990.

    Google Scholar 

  22. S. R. Brown, “A Note on the Description of Surface Roughness Using Fractal Dimension”, Geophysical Research Letters, 14, pp. 1095–1098, 1987.

    Article  Google Scholar 

  23. C. Tricot, J. F. Quiniou, D. Wehbi, C. Roques-Carmes and B. Dubuc, “Evaluation de la Dimension Fractale d’un Graphe”, Revue de Physique Appl., 23, pp. 111–124, 1988.

    Article  Google Scholar 

  24. G. Bouligand, “Sur la Notion d’ordre de Mesure d’un Ensemble Plan”, Bulletin Sc. Mathem., II-52, pp. 185–192, 1929.

    Google Scholar 

  25. M. F. Barnsley, Fractals Everywhere, Academic Press, New York, 1988.

    MATH  Google Scholar 

  26. P. A. Burrough, “Fractal Dimensions of Landscapes and other Environmental Data”, Nature, 294, pp. 240–242, 1981.

    Article  Google Scholar 

  27. R. F. Voss, “Random Fractal Forgeries”, in Fundamental Algorithms for Computer Graphics, R. A. Earnshaw, ed., NATO ASI Series F17, pp. 805–835, Springer-Verlag, Berlin, 1985.

    Google Scholar 

  28. S. E. Hough, “On the Use of Spectral Methods for the Determination of Fractal Dimension”, Geophysical Research Letters, 16, pp. 673–676, 1989.

    Article  Google Scholar 

  29. RILEM Technical Committee 50, “Determination of the Fracture Energy of Mortar and Concrete by Means of Three-Point Bend Tests on Notched Beams”, Draft Recommendation, Materials and Structures, 18, pp. 287–290, 1985.

    Article  Google Scholar 

  30. A. Carpinteri, “Cusp Catastrophe Interpretation of Fracture Instability”, Journal of the Mechanics and Physics of Solids, 37, pp. 567–582, 1989.

    Article  MATH  Google Scholar 

  31. H. J. Herrmann and S. Roux, Statistical Models for the Fracture of Disordered Media, North Holland, Amsterdam, 1990.

    Google Scholar 

  32. P. Pfeuty and G. Toulouse, Introduction to the Renormalization Group and Critical Phenomena, John Wiley & Sons, London, 1977.

    Google Scholar 

  33. K. G. Wilson, “Renormalization Group and Critical Phenomena”, Physical Review, B4, pp. 3174–3205, 1971.

    Article  MATH  Google Scholar 

  34. G. I. Barenblatt, Similarity, Self-Similarity and Intermediate Asymptotics, Consultant Bureau, New York, 1979.

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Carpinteri, A., Chiaia, B., Maradei, F. (1995). Experimental Determination of the Fractal Dimension of Disordered Fracture Surfaces. In: Sih, G.C., Carpinteri, A., Surace, G. (eds) Advanced Technology for Design and Fabrication of Composite Materials and Structures. Engineering Applications of Fracture Mechanics, vol 14. Springer, Dordrecht. https://doi.org/10.1007/978-94-015-8563-7_19

Download citation

  • DOI: https://doi.org/10.1007/978-94-015-8563-7_19

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-4507-2

  • Online ISBN: 978-94-015-8563-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics