Skip to main content

Polyomorphisms Conjugate to Dilations

  • Chapter
Book cover Automorphisms of Affine Spaces

Abstract

Consider polynomial maps f : ℂn → ℂn and their dilations sf(x) by complex scalars s. That is, maps f whose components f i are polynomials with complex coefficients in the n variables (x 1, x 2, ... , x n) = x ∈ ℂn. The question, first raised by O.-H. Keller in 1939 [10] for polynomials over the integers but now also raised for complex polynomials and, as such, known as The Jacobian Conjecture (JC), asks whether a polynomial map f with nonzero constant Jacobian determinant det f′(x) need be a polyomorphism: I.e., bijective with polynomial inverse. It suffices to prove injectivity because in 1960–62 it was proved, first in dimension 2 by Newman [19] and then in all dimensions by Białynicki-Birula and Rosenlicht [4], that, for polynomial maps, surjectivity follows from injectivity; and furthermore, under Keller’s hypothesis, the inverse f −1(x) will be polynomial, at least in the complex case, if the polynomial map is bijective. The group of all polyomorphisms of ℂn is denoted GA n (ℂ). It is isomorphic to the group Aut C[x] of automorphisms σ of the polynomial ring ℂ[x] by means of the correspondence ø(f) = σ where σ(x i ) = f i (x). Polynomial maps f(x) satisfying det f′(x) = const ≠ 0 are called Keller maps. We can and do assume that f(0) = 0 and f′(0) = I. Five main problems arise:

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. V.I. Arnold, Geometrical Methods in the Theory of Ordinary Differential Equations,Grundlehren Math. Wiss., vol. 250, Springer-Verlag, New York Heidelberg Berlin, 1983, Chapter 5: Resonances, Poincaré’s Theorem, and Siegel’s Theorem.

    Google Scholar 

  2. H. Bass, E. Connell, and D. Wright, The Jacobian Conjecture: Reduction of Degree and Formal Expansion of the Inverse, Bulletin of the American Mathematical Society 7 (1982), 287–330.

    Article  MathSciNet  MATH  Google Scholar 

  3. H. Bass and G.H Meisters, Polynomial Flows in the Plane, Adv. in Math. 55 (1985), 173–208.

    Article  MathSciNet  MATH  Google Scholar 

  4. A. Bialynicki-Birula and M. Rosenlicht, Injective morphisme of real algebraic varieties, Proceedings of the American Mathematical Society 13 (1962), 200–203.

    Article  MathSciNet  MATH  Google Scholar 

  5. B. Deng, G.H. Meisters, and G. Zampieri, Conjugation for polynomial mappings, Preliminary Manuscript, 1994.

    Google Scholar 

  6. L.M. Druikowski, An Effective Approach to Keller’s Jacobian Conjecture, Math. Ann. 264 (1983), 303–313.

    Article  MathSciNet  Google Scholar 

  7. S. Friedland and J. Milnor, Dynamical properties of plane polynomial automorphisms, Ergodic Theory and Dynamical Systems 9 (1989), 67–99.

    Article  MathSciNet  MATH  Google Scholar 

  8. E.-M.G.M. Hubbers, The Jacobian Conjecture: Cubic Homogeneous Maps in Dimension Four,Master’s thesis, University of Nijmegen, Toernooiveld, 6525 ED Nijmegen, The Netherlands, February 17 1994, directed by A.R.P. van den Essen.

    Google Scholar 

  9. H.W.E. Jung, Über ganze birationale Transformationen der Ebene, J. Reine Angew. Math. 184 (1942), 161–174.

    MathSciNet  Google Scholar 

  10. O. Keller, Ganze Cremona-Transformationen,Monatsh. Math. Phys. 47 (1939), 299–306, See items 6 & 7 in Keller’s table on page 301.

    Google Scholar 

  11. W. van der Kulk, On polynomial rings in two variables,Nieuw Archief voor Wiskunde 3 (1953), no. 1, 33–41.

    Google Scholar 

  12. G.H. Meisters, Inverting polynomial maps of n-space by solving differential equations,Delay and Differential Equations, Proceedings in Honor of George Seifert, Ames, Iowa, Oct. 18–19, 1991 (A.M. Fink, R.K. Miller, and W. Kliemann, eds.), World Sci. Pub. Singapore • Teaneck NJ • London • Hong Kong, 1992, ISBN 98102–0891-X, pp. 107–166.

    Google Scholar 

  13. G.H. Meisters, Power Similarity: Summary of First Results, C.nference on Polynomial Automorphisms at C. I. R. M. Luminy, France, October 12–17 1992.

    Google Scholar 

  14. G.H. Meisters, Invariants of cubic similarity, Recent Results on the Global Asymptotic Stability Jacobian Conjecture (M. Sabatini, ed.), Matematica 429, Università di Trento, 1994, Workshop, I-38050 POVO (TN) ITALY, September 14–17 1993. Dipartimento di Matematica, Italia.

    Google Scholar 

  15. G.H. Meisters and C. Olech, Strong Nilpotence Holds in Dimensions up to Five Only, Linear and Multilinear Algebra 30 (1991), 231–255, MR 92i: 15009.

    Google Scholar 

  16. G.H. Meisters and C. Olech, Power-Exact, Nilpotent, Homogeneous Matrices, Linear and Multilinear Algebra 35 (1993), 225–236.

    Article  MathSciNet  MATH  Google Scholar 

  17. M. Nagata, On the Automorphism group of k[X, Y], Kyoto Univ. Lectures in Math. 5, Kyoto University, Kinokuniya — Tokyo, 1972.

    Google Scholar 

  18. E. Nelson, Topics in Dynamics I: Flows, Princeton University Press, Section 3, 1970.

    Google Scholar 

  19. D.J. Newman, One—one polynomial maps, Proceedings of the American Mathematical Society 11 (1960), 867–870.

    Article  MathSciNet  Google Scholar 

  20. J.-P. Rosay and W. Rudin, Holomorphic maps from C“ to C”, Transactions of the American Mathematical Society 310 (1988), 47–86.

    MathSciNet  MATH  Google Scholar 

  21. K. Rusek, A Geometric Approach to Keller’s Jacobian Conjecture, Math. Ann. 264 (1983), 315–320.

    Article  MathSciNet  MATH  Google Scholar 

  22. K. Rusek, Polynomial Automorphisms, preprint 456, Institute of Mathematics, Polish Academy of Sciences, IMPAN, Sniadeckich 8, P.O. Box 137, 00–950 Warsaw, Poland, May 1989.

    Google Scholar 

  23. C.L. Siegel, Iteration of Analytic Functions, Annals of Mathematics 43 (1942), no. 4, 607–612.

    Article  MathSciNet  MATH  Google Scholar 

  24. S. Sternberg, Local contractions, a theorem of Poincaré, and the structure of local homeomorphisms: I, Amer. J. Math. 79 (1957), 809–824.

    Article  MathSciNet  MATH  Google Scholar 

  25. S. Sternberg, Local contractions, a theorem of Poincaré, and the structure of local homeomorphisms: II, Amer. J. Math. 80 (1958), 623–631.

    Article  MathSciNet  MATH  Google Scholar 

  26. S. Sternberg, Local contractions, a theorem of Poincaré, and the structure of local homeomorphisms: III, Amer. J. Math. 81 (1959), 578–604.

    Article  MathSciNet  MATH  Google Scholar 

  27. D. Wright, The Jacobian Conjecture: linear triangularization for cubics in dimension three, Linear and Multilinear Algebra 34 (1993), 85–97.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Meisters, G. (1995). Polyomorphisms Conjugate to Dilations. In: van den Essen, A. (eds) Automorphisms of Affine Spaces. Springer, Dordrecht. https://doi.org/10.1007/978-94-015-8555-2_4

Download citation

  • DOI: https://doi.org/10.1007/978-94-015-8555-2_4

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-4566-9

  • Online ISBN: 978-94-015-8555-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics