Skip to main content

Part of the book series: ERCOFTAC Series ((ERCO,volume 1))

  • 153 Accesses

Abstract

Dealing with diffusion and transport processes in atmospheric mesoscale flow fields one often comes across the situations when these processes take place within so-called atmospheric inversion layers, namely the layers characterized by the increase of the absolute temperature with height. In the course of the diurnal evolution of the atmospheric planetary boundary layer the two most typical examples of the sublayers with the inverse temperature gradient can be observed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Batchvarova, E., Gryning, S.-E. 1991 Applied model for the growth of the daytime mixed layer. Boundary-Layer Met. 56, 261–274.

    Article  ADS  Google Scholar 

  • Brutsaert, W. 1982 Evaporation into the Atmosphere. Reidel. 299pp.

    Google Scholar 

  • Caughey, S.J., Palmer, S.G. 1991 Some aspects of turbulence structure through the depth of the convective boundary layer. Quart.1. Roy. Met. Soc. 105, 811–827.

    Article  Google Scholar 

  • Chorley, L.G., Caughey, S.J., Readings, C.J. 1975 The development of the atmospheric boundary layer: three case studies. Met. Mag. 104, 349–360.

    Google Scholar 

  • Clarke, R.H., Dyer, A.J., Brook, R.R., Reid, D.G., Troup, A.J. 1971 The Wangara experiment: Boundary layer data. Tech. Paper 19, Div. Meteor. Phys., CSIRO Australia, 363pp. [ISBN 0643 00648 6. NTIS N71–37838.]

    Google Scholar 

  • Deardorff, J.W. 1970a Preliminary results from numerical integration of the unstable boundary layer. J. Atmos. Sci. 27, 1209–1211.

    Article  ADS  Google Scholar 

  • Deardorff, J.W. 1970 Convective velocity and temperature scales for the unstable planetary boundary layer and for Raleigh convection. J. Atmos. Sci. 27, 1211–1213.

    Article  ADS  Google Scholar 

  • Deardorff, J.W. 1979 Prediction of convective mixed-layer entrainment for realistic capping inversion structure. J. Atmos. Sci. 36, 424–436.

    Article  ADS  Google Scholar 

  • Deardorff, J.W., Willis, G.E. 1985 Further results from a laboratory model of the convective planetary boundary layer. Boundary-Layer Met. 32, 205–236.

    Article  ADS  Google Scholar 

  • Deardorff, J.W., Willis, G.E., Lilly, D.K. 1969 Laboratory investigation of non-steady penetrative convection. J. Fluid Mech. 35, 7–31.

    Article  ADS  Google Scholar 

  • Deardorff, J.W., Willis, G.E., Stockton, B.H. 1980 Laboratory studies of the entrainment zone of a convectively mixed layer. J. Fluid Mech. 100, 41–64.

    Article  ADS  Google Scholar 

  • Dyer, A.J. 1974 A review of flux-profile relations. Boundary-Layer Met. 1, 363–372.

    Article  ADS  Google Scholar 

  • Fernando, H.J.S. 1991 Turbulent mixing in stratified fluids. Annu. Rev. Fluid Mech. 23, 455–493.

    Article  ADS  Google Scholar 

  • Kantha, L.H. 1977: Note on the role of internal waves in thermocline erosion. In Modelling and Predictions of the Upper Layer of the Ocean (ed. Kantha, L.H ), pp. 173–177. Pergamon Press.

    Google Scholar 

  • Lenschow, D.H., Wyngaard, J.C., Pennel, W.T. 1980 Mean-field and second-momentum budgets in a baroclinic, convective boundary layer. J. Atmos. Sci. 37, 1313–1326.

    Article  ADS  Google Scholar 

  • Mason, P.J. 1984 Large-eddy simulation for the convective atmospheric boundary layer. J. Atmos. Sci. 41, 2052–2062.

    Article  ADS  Google Scholar 

  • Moeng, C.-H. 1984 A large-eddy simulation for the study of planetary boundary layer turbulence. J. Atmos. Sci. 46, 1492–1516.

    Google Scholar 

  • Nelson, E., Stull, R., Eloranta, E. 1989 A prognostic relationship for entrainment zone thickness. J. Appl. Meteorol. 28, 885–903.

    Article  ADS  Google Scholar 

  • Nieuwstadt, F.T.M. 1990 Direct and large-eddy simulation of free convection. In Proc, 9th Internat. Heat Transfer Conf, Jerusalem, August, 19–24, 1990, pp. 37–47. Amer. Soc. Mech. Engrg., New York, Vol.I.

    Google Scholar 

  • Schmidt, H., Schumann, U. 1989 Coherent structures of the convective boundary layer derived from large-eddy simulations. J. Fluid. Mech. 200, 511–562.

    Article  ADS  MATH  Google Scholar 

  • Shay, T.J., Gregg, M.C. 1986 Convectively driven turbulent mixing in the upper ocean. J. Phys. Oceanogr. 16, 1777–1798.

    Article  ADS  Google Scholar 

  • Stull, R.B. 1976 Mixed-layer depth model based on turbulent energetics. J. Atmos. Sci. 33, 1268–1278.

    Article  ADS  Google Scholar 

  • Stull, R.B. 1988 An Introduction to Boundary Layer Meteorology. Kluwer Academic Publishers. 666pp.

    Google Scholar 

  • Willis, G.E., Deardorff, J.W. 1974 A laboratory model of the unstable planetary boundary layer. J. Atmos. Sci. 31, 1297–1307.

    Article  ADS  Google Scholar 

  • Thorpe, S.A. 1973 Turbulence in stably stratified fluids: a review of laboratory experiments. Boundary-Layer Met. 5, 95–119.

    Article  ADS  Google Scholar 

  • Zilitinkevich, S.S. 1972 On the determination of the height of the Ekman boundary layer. Boundary-Layer Met. 3, 141–145.

    Article  ADS  Google Scholar 

  • Zilitinkevich, S.S. 1975 Resistance laws and prediction equations for the depth of the planetary boundary layer. J. Atmos. Sci. 32, 741–752.

    Article  ADS  Google Scholar 

  • Zilitinkevich, S.S. 1989a Velocity profiles, the resistance law and the dissipation rate of mean flow kinetic energy in a neutrally and stably stratified planetary boundary layer. Boundary-Layer Met. 46, 367–387.

    Article  ADS  Google Scholar 

  • Zilitinkevich, S.S. 19896 The temperature profile and heat transfer law in a neutrally and stably stratified planetary boundary layer. Boundary-Layer Met. 49, 1–5.

    Google Scholar 

  • Zilitinkevich, S.S. 1991 Turbulent Penetrative Convection. Avebury Technical. 179pp.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Fedorovich, E. (1995). Inversion layers. In: Gyr, A., Rys, FS. (eds) Diffusion and Transport of Pollutants in Atmospheric Mesoscale Flow Fields. ERCOFTAC Series, vol 1. Springer, Dordrecht. https://doi.org/10.1007/978-94-015-8547-7_8

Download citation

  • DOI: https://doi.org/10.1007/978-94-015-8547-7_8

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-4501-0

  • Online ISBN: 978-94-015-8547-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics