Skip to main content

Some topics in turbulent diffusion

  • Chapter
  • 149 Accesses

Part of the book series: ERCOFTAC Series ((ERCO,volume 1))

Abstract

Consider a stochastic variable: X(t), which for example denotes the position of a randomly moving fluid particle, with an associated probability density function P(x), with the following properties

$$ P\left( x \right) \geqslant 0,{\text{ }}\int {P\left( x \right)dx = 1} {\text{ }}\overline {X^n } = \int {P\left( x \right)x^n dx.} $$
(5.1)

A stochastic process can in general then be defined as the function: Y(X,t). Note that the function may depend on more than one stochastic variable.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Cogan J.L. 1985 Monte Carlo simulations of buoyant dispersion. Atmospheric Environment 19, 867–878.

    Article  Google Scholar 

  • Hanna, S.R. 1981 Lagrangian and Eulerian timescales in the daytime boundary layer. J. Appl. Met, 20, 242–249.

    Article  ADS  Google Scholar 

  • De Baas A.F., van Dop, H., Nieuwstadt, F.T.M. 1986 An application of the Langevin equation for inhomogeneous conditions to dispersion in a convective boundary layer. Q. J. R. Met. Soc, 112, 165–180.

    Article  ADS  Google Scholar 

  • Monin A.S., Yaglom A.M. 1975 Statistical Fluid Mechanics. M.I.T. Press.

    Google Scholar 

  • Netterville, D.D.J. 1990 Plume rise entrainment and dispersion in turbulent winds. Atmospheric Environment 24A, 1061–1081.

    Article  Google Scholar 

  • Thomson D.J. 1984 Random walk modelling of diffusion in inhomogeneous turbulence. Q. JI R. met. Soc, 110, 1107–1120.

    Article  ADS  Google Scholar 

  • Thomson D.J. 1987 Criteria for the selection of the stochastic models of particle trajectories in turbulent flows. J. Fluid Mech, 180, 529–556.

    Article  ADS  MATH  Google Scholar 

  • Van Dop, H., Nieuwstadt, F.T.M., Hunt, J.C.R. 1985 Random walk models for particle displacements in inhomogeneous unsteady turbulent flows. Phys. Fluids 28, 1639–1653.

    Article  ADS  MATH  Google Scholar 

  • Van Kampen, N.G. 1981 Stochastic processes in physics and chemistry. North-Holland.

    Google Scholar 

  • Vilà-Guerau de Arellano, J., Talmon, A., Builtjes, P.J.H. 1990 A chemically reactive plume model for the NO-NO2–03 system. Atmospheric Environment 24A, 2237–2246.

    Google Scholar 

  • Vilà-Guerau de Arellano, J. 1992a The influence of turbulence on chemical reactions in the atmospheric boundary layer. Ph. D. Thesis Universiteit Utrecht.

    Google Scholar 

  • Vilà-Guerau de Arellano, J., Duynkerke, P.G. 1992b Second-order study of the covariance between chemically reactive species in the surface layer. J. Atmos. Chem, In press.

    Google Scholar 

  • Willis G.E., Deardorff, J.W. 1976 A laboratory model of diffusion into the convective planetary boundary layer. Q. JI R. Met. Soc, 102. 427–445.

    Article  ADS  Google Scholar 

  • Willis G.E., Deardorff, J.W. 1978 A laboratory study of dispersion from an elevated source within a modeled convective planetary boundary layer. Atmospheric Environment 12, 1305–1311.

    Article  Google Scholar 

  • Willis G.E., Deardorff, J.W. 1981 A laboratory study of dispersion from a source in the middle of the convective mixed layer. Atmosheric Ennronment 15, 109–117.

    Article  Google Scholar 

  • Zannetti, P., Al-Madani, N. 1984 Simulation of transformation, buoyancy and removal processes by Lagrangian particle methods. In Proc. 14th Int. Technical Meetimg Air Pollution modeling and its Application (ed. Zannetti, P., Al-Madani, N ), pp. 733–744, Plenum.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

van Dop, H. (1995). Some topics in turbulent diffusion. In: Gyr, A., Rys, FS. (eds) Diffusion and Transport of Pollutants in Atmospheric Mesoscale Flow Fields. ERCOFTAC Series, vol 1. Springer, Dordrecht. https://doi.org/10.1007/978-94-015-8547-7_5

Download citation

  • DOI: https://doi.org/10.1007/978-94-015-8547-7_5

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-4501-0

  • Online ISBN: 978-94-015-8547-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics