Skip to main content

Part of the book series: ERCOFTAC Series ((ERCO,volume 1))

  • 154 Accesses

Abstract

Numerical simulations of atmospheric flows are based on the conservation principles of mass, momentum and energy. These principles — expressed in terms of conserved integrals — are conveniently cast into differential form, the hydrodynamical equations. Depending on the application, these equations are altered to a variety of different forms with different mathematical properties and different requirements on initial and/or boundary conditions in order to represent well-posed problems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Burridge, D. M. 1975 A split semi-implicit reformulation of the Bushby-Timpson 10-level model. Quart. J. Roy. Meteorol. Soc. 101, 777–792

    ADS  Google Scholar 

  • Cullen, M.J.P. 1990 A test of a semi-implicit integration technique for a fully compressible non-hydrostatic model. Quart. J. Roy. Meteorol. Soc. 116, 1253–1258

    Article  ADS  Google Scholar 

  • Davies, H. C. 1983 Limitations of some common lateral boundary schemes used in regional NWP models. Mon. Wea. Rev. 111, 1002–1011

    Article  ADS  Google Scholar 

  • Deardorff, J. W. 1972 Parameterization of the planetary boundary layer for use in general circulation models. Mon. Wea. Rev. 100, 93–106

    Article  ADS  Google Scholar 

  • Durran, D. R. & Yang, M.-Y. 1993 Toward more accurate wave-permeable boundary conditions. Mon. Wea. Rev. 121, 604–620

    Article  ADS  Google Scholar 

  • Durran, D. R. 1989 Improving the anelastic approximation. Improving the anelastic approximation. 46, 1453–1461

    Google Scholar 

  • Dutton, J.A. & Fichtl, G. H. 1969 Approximate equations of motion for gases and liquids. J. Atmos. Sci. 26, 241–254

    Article  ADS  Google Scholar 

  • Engquist, B. & Majda, A. 1977 Absorbing boundary conditions for the numerical simulation of waves. Mathematics of Computation 31, 629–651

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Foreman, M. G. G. 1986 An Accuracy analysis of boundary conditions for the forced shallow Water equations. J. Comp. Phys. 64, 334–367

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Givoli, D. 1991 Non-reflecting boundary conditions. J. Comp. Phys. 94, 1–29

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Gresho, P. M. 1991 Incompressible fluid dynamics: some fundamental formulation issues. Ann. Rev. Fluid. Medi. 23, 413–453

    Article  MathSciNet  ADS  Google Scholar 

  • Gresho, P. M. 1987 On pressure boundary conditions for the incompressible NavierStokes equations. Int. J. Num. Meth. Fluids 7, 1111–1145

    Article  MATH  Google Scholar 

  • Gyarmati, 1970 Non-equilibrium thermodynamics. Springer Verlag, Berlin

    Book  Google Scholar 

  • Hadamard, J. 1921 Lectures on Cauchy’s Problem in Linear Partial Differential Equations. Yale University, Reprint Dover, New York 1956

    Google Scholar 

  • Hedstrom, G. W. 1979 Nonreflecting boundary conditions for nonlinear hyperbolic systems. J. Comp. Phys. 30, 222–237

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Klemp, J. P. & Durran, D. R. 1983 An upper boundary condition permitting internal gravity wave radiation in numerical mesoscale models. Mon Wea. Rev. 111, 430–444

    Article  ADS  Google Scholar 

  • Klainerman, S. & Majda, A. 1981 Singular limits of quasilinear hyperbolic systems with large parameters and the incompressible limit of compressible fluids. Corn. Pure Appl. Math. XXXIV, 481–524

    Article  MathSciNet  ADS  Google Scholar 

  • Klainerman, S. & Majda, A. 1982 Compressible and incompressible fluids. Corn. Pure Appl. Math. XXXV, 629–651

    Article  MathSciNet  ADS  Google Scholar 

  • Kreiss, H.-O. & Lorenz, A. 1989 Initial-boundary value problems and the NavierStokes equations. Academic Press, Boston

    Google Scholar 

  • Kröner, D. 1991 Absorbing boundary conditions for the linearized Euler Equations in 2-d. Mathematics of Computing, 57, 153–167

    Article  ADS  MATH  Google Scholar 

  • Nirenberg, L. 1973 Lectures on linear partial differential equations. C.B.M.S. Regional Conf. Ser. in Math. no 17, Providence, Rhode Island

    Google Scholar 

  • Ogura, Y. & Phillips, N.A. 1962 Scale analysis of deep and shallow convection in the atmosphere. J. Atmos. Sci. 19, 173–179

    Article  ADS  Google Scholar 

  • Orlanski, I. 1976 A simple boundary condition for multi-dimensional flows. J. Comp. Phys. 21, 251–269

    Article  ADS  MATH  Google Scholar 

  • Raymond, W. H. & Kuo, H. L. 1984 A radiation boundary condition for multi-dimensional flow. Quart. J. Roy. Meteorol. Soc. 110, 535–551

    Article  ADS  Google Scholar 

  • Tatsumi, Y. 1980 Comparison of the time-dependent lateral boundary conditions proposed by Davies and Hovermale. WGNE Progress Rep. No. 21, WMO Secretariat 93–94

    Google Scholar 

  • Wippermann, F. 1981 The applicability of several approximations in meso-scale modelling — a linear approach. Contrib. Phys. Atmos. 54, 298–308

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Eppel, D.P., Callies, U. (1995). Boundary Conditions and Treatment of Topography in Limited-Area Models. In: Gyr, A., Rys, FS. (eds) Diffusion and Transport of Pollutants in Atmospheric Mesoscale Flow Fields. ERCOFTAC Series, vol 1. Springer, Dordrecht. https://doi.org/10.1007/978-94-015-8547-7_2

Download citation

  • DOI: https://doi.org/10.1007/978-94-015-8547-7_2

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-4501-0

  • Online ISBN: 978-94-015-8547-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics