Skip to main content

Part of the book series: Mathematical Physics Studies ((MPST,volume 18))

  • 308 Accesses

Abstract

The problem of the frustration on graphs is investigated in terms of Cramerlike systems on a hypercube. This approach provides a linear algorithmic method to characterise the non-frustrated edge configurations. The case of complete graphs is given as example.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Amari, S. I. (1982) Competitive and cooperative aspect in dynamic of neural excitation and self-organisation . In S. I. Amari and Arbib (Eds) Competition and cooperation in neural nets. Springer verlag New York, 1–28

    Chapter  Google Scholar 

  2. Balian, R., Maynard, R., Toulouse, G. (1979) Ill- Condensed M atter, North-Holland, Amsterdam

    Google Scholar 

  3. Amit, D. (1989) Modeling brain function. Cambridge University Press

    MATH  Google Scholar 

  4. Benaïm, M., (1992) Dynamical Properties of Neural Nets Using Competitive Attraction Mechanisms. Thèse, Ecole Nationale Supérieure de l’Aéronautique et de l’Espace, Toulouse

    Google Scholar 

  5. Berge, C. Graphes et hypergraphes, Dunod, Paris 1990

    Google Scholar 

  6. Bollobas, B. (1972) Extremnal Graph Theory, Academic Press, London New York

    Google Scholar 

  7. Busaker, R. B., Saaty, T.L. (1965) Finite Graph and Networks. An Introduction with Applications. McGraw-Hill Book Company. New York Toronto, London, Sydney

    Google Scholar 

  8. Cohen, M. A., Grossberg, S. (1983) Absolute stability of global pattern information and parallel memory storage by competitive neural networks. IEEE Transactions on Systems, Man and cybernetics SMC 13, 815–826

    Article  MathSciNet  MATH  Google Scholar 

  9. Combe, Ph., Nencka, H. (1995) Cooperative Neural Networks and Frustration on Graphs. To appear

    Google Scholar 

  10. Coxeter, H. S. M. (1964) Regular compound tesselations of the hyperbolic plane, Proc. Roy. Soc. 278, pp 147–169

    Article  MathSciNet  ADS  MATH  Google Scholar 

  11. Coxeter, H.S.M., Moser, W.O.J. (1980) Generators and Relations for Discrete Groups, Springer Verlag, Berlin Heidelberg, New York

    Book  Google Scholar 

  12. Fiorini, S., Wilson, R. J. (1977) Edge Coloring of Graphs, Pitman, London:

    Google Scholar 

  13. Gross, J.L., Tucker, T.W. (1987) Topological Graph Theory, A. Wiley-Interscience Publications, New York

    MATH  Google Scholar 

  14. Grossberg, S. (1969) On learning and energy entropy dependence in recurrent and non recurrent signed networks. Journal of Statistical Physics 48, 105–132

    MathSciNet  Google Scholar 

  15. Harrary, F. (1969) Graph Theory Addison-Wesley

    Google Scholar 

  16. Hirsch, M. W. (1982) Systems of differential equations which are competitive or cooperative. I: Limits sets. SIAM J. Math. Anal. 13, 167–179

    Article  MathSciNet  MATH  Google Scholar 

  17. Hirsch, M. W. (1985) Systems of differential equations which are competitive or cooperative. II: Convergence almost every where. SIAM J. Math. Anal. 16 423–439

    Article  MathSciNet  MATH  Google Scholar 

  18. Hirsch, M. W. (1989) Convergent Activation Dynamics in Continuous Time Networks. Neural Networks 2, 331–349

    Article  Google Scholar 

  19. Hopfield, J.J. (1982) Neural networks and physical systems with emergent selective computational abilities. Proc. Nat. Acad. Sci. USA 79, 2554–2558

    Article  MathSciNet  ADS  Google Scholar 

  20. Ingber, L. (1982) Statistical mechanics of neocortical interactions. Physica 5D, 83–107

    MathSciNet  ADS  Google Scholar 

  21. Kohonen, T., (1984) Self organization and associative memory. Springer Verlag, New York

    MATH  Google Scholar 

  22. Little, W. (1982) The existence of persistent state in the brain. Math. Biosciences 19, 101–119

    Article  Google Scholar 

  23. Maldbourg (von der), C., (1973) Self organization of orientation sensitive cells in the striate cortex. Kybernetik 14, 85–100

    Article  Google Scholar 

  24. Mc Culloch, W. S., Pitts, W. (1943) A logical calculus of ideas immanent in nervous activity. Bull. Math. Biophys. 5, 115–133.

    Article  MathSciNet  Google Scholar 

  25. Mezard, M., Parisi, G., Virasoro, A.-A. (1987) Spin glass theory and beyond. World Scientific

    MATH  Google Scholar 

  26. Ore, O. (1970) Les graphes et leurs applications, Dunod Paris

    MATH  Google Scholar 

  27. Palis, J., De Melo, W. (1982) Geometric Theory of Dynamical Systems. Springer Verlag, New york

    Book  MATH  Google Scholar 

  28. Parisi, G., (1986) Asymmetric neural networks and the process of learning. J. Phys. A19, L675–L680

    MathSciNet  ADS  Google Scholar 

  29. Rivier, N. (1994) Glass: elementary excitations and geometry;from bounds to tunneling modes, Philosophical Magazine. B 69. pp 911–924

    Google Scholar 

  30. Shaw, G.L., Vasudevant, R. (1974) Persistent states of neural networks and random nature of synaptic transmission. Math. Biosciences 21, 207–218

    Article  MATH  Google Scholar 

  31. Toulouse, G. (1977) Theory of the frustration effect in spin glasses:I. Commun. Phys. 2, pp 115–119. See also reprint in Spin glass theory and beyond. M. Mezard, G. Parisi, A.-A. Virasoro Eds. pp 99–103. World Scientific 1987

    Google Scholar 

  32. White, A.T. (1973) Graphs, Groups and Surfaces. North-Holland Publishing Company, New York

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Combe, P., Nencka, H. (1995). Non-Frustrated Signed Graphs. In: Bertrand, J., Flato, M., Gazeau, JP., Irac-Astaud, M., Sternheimer, D. (eds) Modern Group Theoretical Methods in Physics. Mathematical Physics Studies, vol 18. Springer, Dordrecht. https://doi.org/10.1007/978-94-015-8543-9_10

Download citation

  • DOI: https://doi.org/10.1007/978-94-015-8543-9_10

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-4598-0

  • Online ISBN: 978-94-015-8543-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics