Skip to main content

Using the Reaction Path Concept to Obtain Rate Constants From ab initio Calculations

  • Chapter
The Reaction Path in Chemistry: Current Approaches and Perspectives

Part of the book series: Understanding Chemical Reactivity ((UCRE,volume 16))

Abstract

Even after so many years of progress in theoretical chemistry, the accurate first-principles description of chemical reactions still poses a major challenge. Under the BornOppenheimer approximation, the dynamics of an elementary chemical reaction are determined by the sum of the electronic energy plus the internuclear coulomb repulsion energy as a function of the nuclear geometry, i.e., the potential energy surface (PES). (Although we shall restrict the present section to bimolecular elementary gas-phase reactions occurring on a single PES, the concepts and methodologies discussed below are applicable to unimolecular reactions as well as to processes occurring in condensed phases or at phase interfaces; for some examples of such applications, see [1].) For example, given the entire PES for a particular reaction, the thermal rate constant can be obtained through a Boltzmann average of the reaction cross section [2,3], which can be approximated with classical trajectory [3-5] or quantum mechanical coupled-channel calculations [6,7]. More recently, a discrete variable representation approach [8] to the calculation of the cumulative reaction probability has also shown great promise. However, since such methods require a great deal of information about the PES, and, in addition, are generally not practical for three-dimensional studies of reactions involving more than three (or, perhaps, four) atoms, the most common approach for calculating thermal rate constants is transition state theory.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. D. G. Truhlar and M. S. Gordon, Science 249, 491 (1990).

    CAS  Google Scholar 

  2. M. A. Eliason and J. O. Hirschfelder, J. Chem. Phys. 30, 1426 (1959).

    CAS  Google Scholar 

  3. D. G. Truhlar and J. T. Muckerman, Reactive scattering cross sections: quasiclassical and semiclassical methods, in R. B. Bernstein (ed.) Atom-Molecule Collision Theory: A Guide for the Experimentalist, Plenum, New York, 1979.

    Google Scholar 

  4. D. G. Truhlar, J. Phys. Chem. 83, 188 (1979).

    CAS  Google Scholar 

  5. L. M. Raff and D. L. Thompson, The classical trajectory approach to reactive scattering, in M. Baer (ed.) The Theory of Chemical Reaction Dynamics, CRC Press, Boca Raton, FL, 1985, Vol. 3.

    Google Scholar 

  6. D. G. Truhlar and R. E. Wyatt, Annu. Rev. Phys. Chem. 27, 1 (1976).

    CAS  Google Scholar 

  7. R. B. Walker and J. C. Light, Annu. Rev. Phys. Chem. 31, 401 (1980).

    CAS  Google Scholar 

  8. T. Seideman and W. H. Miller, J. Chem. Phys. 96, 4412 (1992)

    CAS  Google Scholar 

  9. T. Seideman and W. H. Miller, J. Chem. Phys. 97, 2499 (1992).

    CAS  Google Scholar 

  10. S. Glasstone, K. J. Laidler, and H. Eyring, Theory of Reaction Rate Processes, McGraw-Hill, New York, 1941, p 10.

    Google Scholar 

  11. H. S. Johnston, Gas Phase Reaction Rate Theory, Ronald Press, New York, 1966, p 119.

    Google Scholar 

  12. D. L. Bunker, Theory of Gas Phase Reaction Rates, Pergammon Press, Oxford, 1966, p 9.

    Google Scholar 

  13. K. J. Laidler, Theories of Chemical Reaction Rates, McGraw-Hill, New York, 1969, n 42.

    Google Scholar 

  14. R. E. Weston and H. A. Schwartz, Chemical Kinetics, Prentice-Hall, Englewood Cliffs, N. J., 1972.

    Google Scholar 

  15. E. Wigner, Trans. Faraday Soc. 34, 29 (1938).

    CAS  Google Scholar 

  16. D. G. Truhlar, A. D. Isaacson, and B. C. Garrett, Generalized transition state theory, in M. Baer (ed.) The Theory of Chemical Reaction Dynamics, CRC Press, Boca Raton, FL, 1985, Vol. 4, pp 65–137.

    Google Scholar 

  17. A. D. Isaacson and D. G. Truhlar, J. Chem. Phys. 76, 1380 (1982).

    CAS  Google Scholar 

  18. E. B. Wilson Jr., J. C. Decius, and P. C. Cross, Molecular Vibrations, Mc-Graw Hill, New York, 1955, p 19.

    Google Scholar 

  19. D. G. Truhlar and A. Kuppermann, J. Am. Chem. Soc. 93, 1840 (1971).

    Google Scholar 

  20. K. Fukui, in R. Daudel and B. Pullman (eds.) The World of Quantum Chemistry, Reidel, Dordrecht, 1974, pp 113–141.

    Google Scholar 

  21. K. Fukui, S. Kato, and H. Fujimoto, J. Am. Chem. Soc. 97, 1 (1975).

    CAS  Google Scholar 

  22. H. F. Schaefer III, Chem. Br. 11, 227 (1975).

    Google Scholar 

  23. P. Pechukas, Annu. Rev. Phys. Chem. 32, 159 (1981).

    CAS  Google Scholar 

  24. G. Herzberg, Molecular Spectra and Molecular Structure. II. Infrared and Raman Spectra of Polyatomic Molecules, Van Nostrand, Princeton, 1945, p 505.

    Google Scholar 

  25. S. K. Gray, W. H. Miller, Y. Yamaguchi, and H. F. Schaefer III, J. Chem. Phys. 73, 2733 (1980).

    CAS  Google Scholar 

  26. K. Morokuma and S. Kato, in D. G. Truhlar (ed.) Potential Energy Surfaces and Dynamics Calculations, Plenum, New York, 1981, p 243.

    Google Scholar 

  27. A. Tachibana, I. Okazaki, M. Koizumi, K. Hori, and T. Yomabe, J. Am. Chem. Soc. 107, 1190 (1985).

    CAS  Google Scholar 

  28. S. M. Colwell and N. C. Handy, J. Chem. Phys. 82, 128 (1985).

    Google Scholar 

  29. G. Doubleday, J. McIver, M. Page, and T. Zielinski, J. Am. Chem. Soc. 107, 5800 (1985).

    CAS  Google Scholar 

  30. T. H. Dunning Jr., L. B. Harding, and E. Kraka, in A. Lagana (ed.) Supercomputer Algorithms for Reactivity, Dynamics, and Kinetics of Small Molecules, Kluwer, Dordrecht, 1989, p 57.

    Google Scholar 

  31. K. K. Baldridge, M. S. Gordon, R. Steckler, and D. G. Truhlar, J. Phys. Chem. 93, 5107 (1989).

    CAS  Google Scholar 

  32. M. Page and J. W. McIver Jr., J. Chem. Phys. 88, 922 (1988).

    CAS  Google Scholar 

  33. J. F. Gaw, Y. Yamaguchi, and H. F. Schaefer III, J. Chem. Phys. 81, 6395 (1984).

    Google Scholar 

  34. P. Pulay, in H. F. Schaefer (ed.) Applications of Electronic Structure Theory, Plenum, New York, 1977, p 153.

    Google Scholar 

  35. J. A. Pople, R. A. Krishnan, H. B. Schlegel, and J. B. Binkley, Int. J. Quantum Chem. Symp. 13, 225 (1979).

    CAS  Google Scholar 

  36. T. H. Dunning Jr., L. B. Harding, A. F. Wagner, G. C. Schatz, and J. M. Bowman, in R. J. Bartlett (ed.) Comparisons of Ab Initio Quantum Chemistry with Experiment for Small Molecules, Reidel, Dordrecht, 1985, p 67.

    Google Scholar 

  37. H. B. Schlegel, Adv. Chem. Phys. 67, 249 (1987)

    CAS  Google Scholar 

  38. H. B. Schlegel, in J. Bertran and I. G. Csizmadia (eds.) New Theoretical Concepts for Understanding Organic Reactions, Kluwer, Dordrecht, 1989, p 33.

    Google Scholar 

  39. D. G. Truhlar, R. Steckler, and M. S. Gordon, Chem. Rev. 87, 217 (1987).

    CAS  Google Scholar 

  40. C. W. Bauschlicher, S. R. Langhoff, and P. R. Taylor, in A. Lagana (ed.) Supercomputer Algorithms for Reactivity, Dynamics, and Kinetics of Small Molecules, Kluwer, Dordrecht, 1989, p 1.

    Google Scholar 

  41. C. Gonzales, C. Sosa, and H. B. Schlegel, J. Phys. Chem. 93, 2435 (1989).

    Google Scholar 

  42. Y. Li and K. Houk, J. Am. Chem. Soc. 111, 1236 (1989).

    CAS  Google Scholar 

  43. D. A. Hrovat, W. T. Borden, R. L. Vance, N. G. Rondan, K. N. Houk, and K. Morokuma, J. Am. Chem. Soc. 112, 2018 (1990).

    CAS  Google Scholar 

  44. B. C. Garrett and D. G. Truhlar, J. Phys. Chem. 83, 1052, 1079, 3058 (1979)

    CAS  Google Scholar 

  45. B. C. Garrett and D. G. Truhlar, J. Phys. Chem. 84, 682 (1980)

    CAS  Google Scholar 

  46. B. C. Garrett and D. G. Truhlar, J. Phys. Chem. 87, 4553 (1983).

    Google Scholar 

  47. B. C. Garrett and D. G. Truhlar, Acc. Chem. Res. 13, 440 (1980).

    Google Scholar 

  48. B. C. Garrett and D. G. Truhlar, J. Chem. Phys. 70, 1593 (1979).

    CAS  Google Scholar 

  49. B. C. Garrett and D. G. Truhlar, J. Amer. Chem. Soc. 101, 5207 (1979)

    CAS  Google Scholar 

  50. B. C. Garrett and D. G. Truhlar, J. Amer. Chem. Soc. 102, 2559 (1980).

    CAS  Google Scholar 

  51. B. C. Garrett and D. G. Truhlar, J. Chem. Phys. 72, 3460 (1980).

    CAS  Google Scholar 

  52. B. C. Garrett, D. G. Truhlar, R. S. Grev, and A. W. Magnuson, J. Phys. Chem. 84, 1730 (1980)

    CAS  Google Scholar 

  53. B. C. Garrett, D. G. Truhlar, R. S. Grev, and A. W. Magnuson, J. Phys. Chem. 87, 4554E (1983).

    Google Scholar 

  54. B. C. Garrett, D. G. Truhlar, and R. S. Grev, in D. G. Truhlar (ed.) Potential Energy Surfaces and Dynamics Calculations, Plenum, New York, 1981, p 587.

    Google Scholar 

  55. R. T. Skodje, D. G. Truhlar, and B. C. Garrett, J. Phys. Chem. 85, 3019 (1981)

    CAS  Google Scholar 

  56. R. T. Skodje, D. G. Truhlar, and B. C. Garrett, J. Chem. Phys. 77, 5955 (1982).

    CAS  Google Scholar 

  57. D. G. Truhlar, A. D. Isaacson, R. T. Skodje, and B. C. Garrett, J. Phys. Chem. 86. 2252 (1982).

    CAS  Google Scholar 

  58. D. K. Bondi, D. C. Clary, J. N. L. Connor, B. C. Garrett, and D. G. Truhlar, J. Chem. Phys. 76, 4986 (1982).

    CAS  Google Scholar 

  59. N. C. Blais, D. G. Truhlar, and B. C. Garrett, J. Chem. Phys. 78, 2363 (1983).

    CAS  Google Scholar 

  60. D. G. Truhlar, R. S. Grev, and B. C. Garrett, J. Phys. Chen. 87, 3415 (1983).

    CAS  Google Scholar 

  61. D. G. Truhlar, W. L. Hase, and J. T. Hynes, J. Phys. Chem. 87, 2664, 5523E (1983).

    Google Scholar 

  62. D. C. Clary, B. C. Garrett, and D. G. Truhlar, J. Chem. Phys. 78, 777 (1983).

    CAS  Google Scholar 

  63. B. C. Garrett, D. G. Truhlar, A. F. Wagner, and T. H. Dunning Jr., J. Chem. Phys. 78, 4400 (1983).

    CAS  Google Scholar 

  64. D. K. Bondi, J. N. L. Connor, B. C. Garrett, and D. G. Truhlar, J. Chem. Phys. 78, 5981 (1983).

    CAS  Google Scholar 

  65. D. G. Truhlar and B. C. Garrett, Annu. Rev. Phys. Chem. 35, 159 (1984).

    CAS  Google Scholar 

  66. B. C. Garrett and D. G. Truhlar, J. Chem. Phys. 81, 309 (1984).

    CAS  Google Scholar 

  67. B. C. Garrett and D. G. Truhlar, Int. J. Quantum Chem. 29, 1463 (1986).

    CAS  Google Scholar 

  68. B. C. Garrett, D. G. Truhlar, J. M. Bowman, A. F. Wagner, D. Robie, S. Arepalli, N. Presser, and R. J. Gordon, J. Am. Chem. Soc. 108, 3515 (1986).

    CAS  Google Scholar 

  69. B. C. Garrett, D. G. Truhlar, and G. C. Schatz, J. Am. Chem. Soc. 108, 2876 (1986).

    CAS  Google Scholar 

  70. D. G. Truhlar, F. B. Brown, R. Steckler, and A. D. Isaacson, in D. C. Clary (ed.) The Theory of Chemical Reaction Dynamics, D. Reidel, Dordrecht, 1986, p 285.

    Google Scholar 

  71. D. G. Truhlar and B. C. Garrett, J. Chim. Phys. Phys.-Chim. Biol. 84, 365 (1987).

    Google Scholar 

  72. B. C. Garrett and D. G. Truhlar, Int. J. Quantum Chem. 31, 81 (1987).

    Google Scholar 

  73. R. Steckler, K. J. Dykema, F. B. Brown, G. C. Hancock, D. G. Truhlar, and T. Valencich, J. Chem. Phys. 87, 7024 (1987).

    CAS  Google Scholar 

  74. T. Joseph, R. Steckler and D. G. Truhlar. J. Chem. Phvs. 87. 7036 (1987).

    CAS  Google Scholar 

  75. T. Joseph, D. G. Truhlar, and B. C. Garrett, J. Chem. Phys. 88, 6982 (1988).

    CAS  Google Scholar 

  76. S. C. Tucker and D. G. Truhlar, in J. Bertran and I. G. Csizmadia (eds.) New Theoretical Concepts for Understanding Organic Reactions, Kluwer, Dordrecht, 1989, p 291.

    Google Scholar 

  77. G. C. Lynch, P. Halvick, D. G. Truhlar, B. C. Garrett, D. W. Schwenke, and D. J. Kouri, Z. Naturf. 44a, 427 (1989).

    Google Scholar 

  78. G. C. Lynch, D. G. Truhlar, and B. C. Garrett, J. Chem. Phys. 90, 3102 (1989).

    CAS  Google Scholar 

  79. B. C. Garrett and D. G. Truhlar, J. Phys. Chem. 95, 10374 (1991).

    CAS  Google Scholar 

  80. V. S. Melissas, D. G. Truhlar, and B. C. Garrett, J. Chem. Phys. 96, 5758 (1992).

    CAS  Google Scholar 

  81. Y.-P. Liu, G. C. Lynch, T. N. Truong, D.-h. Lu, D. G. Truhlar, and B. C. Garrett, J. Am. Chem. Soc. 115, 2408 (1993).

    CAS  Google Scholar 

  82. A. D. Isaacson, D. G. Truhlar, S. N. Rai, R. Steckler, G. C. Hancock, B. C. Garrett, and M. J. Redmon, Comput. Phys. Commun. 47, 91 (1987).

    CAS  Google Scholar 

  83. D.-h. Lu, T. N. Truong, V. S. Melissas, G. C. Lynch, Y.-P. Liu, B. C. Garrett, R. Steckler, A. D. Isaacson, S. N. Rai, G. C. Hancock, J. C. Lauderdale, T. Joseph, and D. G. Truhlar, QCPE Bull. 12, 35 (1992).

    Google Scholar 

  84. D.-h. Lu, T. N. Truong, V. S. Melissas, G. C. Lynch, Y.-P. Liu, B. C. Garrett, R. Steclkler, A. D. Isaacson, S. N. Rai, G. C. Hancock, J. C. Lauderdale, T. Joseph, and D. G. Truhlar, Comput. Phys. Commun. 71, 235 (1992).

    CAS  Google Scholar 

  85. A. Tweedale and K. J. Laidler, J. Chem. Phys. 53, 2045 (1970).

    CAS  Google Scholar 

  86. B. C. Garrett and D. G. Truhlar, J. Am. Chem. Soc. 101, 4534 (1979).

    CAS  Google Scholar 

  87. P. Pechukas, in W. H. Miller (ed.) Dynamics of Molecular Collisions, Part B, Plenum, New York, 1976, p 269.

    Google Scholar 

  88. B. C. Garrett and D. G. Truhlar, J. Phys. Chem. 83, 200, 3058E (1979).

    Google Scholar 

  89. B. C. Garrett and D. G. Truhlar, J. Phys. Chem. 83, 2921 (1979).

    CAS  Google Scholar 

  90. B. C. Garrett, D. G. Truhlar, and R. S. Grev, J. Phys. Chem. 84, 1749 (1980).

    CAS  Google Scholar 

  91. R. A. Marcus, J. Chem. Phys. 45, 4493 (1966).

    CAS  Google Scholar 

  92. R. A. Marcus and M. E. Coltrin, J. Chem. Phys. 67, 2609 (1977).

    CAS  Google Scholar 

  93. B. C. Garrett and D. G. Truhlar, J. Chem. Phys. 79, 4931 (1983).

    CAS  Google Scholar 

  94. B. C. Garrett, T. Joseph, T. N. Truong, and D. G. Truhlar, Chem. Phys. 136, 271 (1989).

    CAS  Google Scholar 

  95. M. Page and J. W. McIver, Jr., J. Chem. Phys. 88, 15 (1988).

    Google Scholar 

  96. C. Doubleday Jr., J. W. McIver Jr., and M. Page, J. Phys. Chem. 92, 4367 (1988).

    CAS  Google Scholar 

  97. H. R. Schwarz, Numerical Analysis, Wiley, Chichester, 1989.

    Google Scholar 

  98. K. Ishida, K. Morokuma, and A. Komornicki, J. Chem. Phys. 66, 2153 (1977)

    CAS  Google Scholar 

  99. M.W. Schmidt, M. S. Gordon, and M. Dupuis, J. Am. Chem. Soc. 107, 2585 (1985).

    CAS  Google Scholar 

  100. T. H. Dunning Jr., E. Kraka, and R. A. Eades, Faraday Discuss. Chem. Soc. 84, 427 (1987).

    CAS  Google Scholar 

  101. B. C. Garrett, M. J. Redmon, R. Steckler, D. G. Truhlar, K. K. Baldridge, D. Bartol, M. W. Schmidt, and M. S. Gordon, J. Phys. Chem. 92, 1476 (1988).

    CAS  Google Scholar 

  102. J. Ischtwan and M. A. Collins, J. Chem. Phys. 89, 2881 (1988).

    CAS  Google Scholar 

  103. C. Gonzalez and H. B. Schlegel, J. Chem. Phys. 90, 2154 (1989)

    CAS  Google Scholar 

  104. C. Gonzalez and H. B. Schlegel, J. Phys. Chem. 94, 5523 (1990).

    CAS  Google Scholar 

  105. W. H. Miller, N. C. Handy, and J. E. Adams, J. Chem. Phys. 72, 99 (1980).

    CAS  Google Scholar 

  106. B. C. Garrett and D. G. Truhlar, J. Phys. Chem. 83, 1915 (1979).

    CAS  Google Scholar 

  107. A. D. Isaacson, D. G. Truhlar, K. Scanlon, and J. Overend, J. Chem. Phys. 75, 3017 (1981).

    CAS  Google Scholar 

  108. A. D. Isaacson and D. G. Truhlar, J. Chem. Phys. 75, 4090 (1981)

    CAS  Google Scholar 

  109. A. D. Isaacson and D. G. Truhlar, J. Chem. Phys. 80, 2888 (1984).

    CAS  Google Scholar 

  110. A. D. Isaacson and X.-G. Zhang, Theor. Chim. Acta 74, 493 (1988).

    CAS  Google Scholar 

  111. Q. Zhang, P. N. Day, and D. G. Truhlar, J. Chem. Phys. 98, 4948 (1993).

    CAS  Google Scholar 

  112. J. N. L. Connor, Chem. Phys. Lett. 4, 419 (1969).

    CAS  Google Scholar 

  113. G. C. Hancock, P. A. Rejto, R. Steckler, F. B. Brown, D. W. Schwenke, and D. G. Truhlar, J. Chem. Phys. 85, 4997 (1986).

    CAS  Google Scholar 

  114. R. Steckler, K. Dykema, F. B. Brown, D. G. Truhlar, and T. Valencich, J. Chem. Phys. 87, 7014 (1987).

    Google Scholar 

  115. D. G. Truhlar, J. Comp. Chem. 12, 266 (1991).

    CAS  Google Scholar 

  116. D. G. Truhlar and A. D. Isaacson, J. Chem. Phys. 94, 357 (1991).

    CAS  Google Scholar 

  117. H. H. Nielsen, Encycl. Phys. 37/1, 173 (1959).

    Google Scholar 

  118. M. A. Pariseau, I. Suzuki, and J. Overend, J. Chem. Phys. 42, 2335 (1965).

    CAS  Google Scholar 

  119. G. Amat, H. H. Nielsen, and G. Tarrago, Rotation-Vibration of Polyatomic Molecules, Marcel Dekker, New York, 1971.

    Google Scholar 

  120. D. G. Truhlar, R. W. Olson, A. C. Jeannotte, and J. Overend, J. Am. Chem. Soc. 98, 2373 (1976).

    CAS  Google Scholar 

  121. S. Califano, Vibrational States, Wiley, London, 1976.

    Google Scholar 

  122. D. Papousek and M. R. Aliev, Molecular Vibrational-Rotational Spectra, Elsevier, New York. 1982.

    Google Scholar 

  123. J. M. Bowman and A. F. Wagner, in D. C. Clary (ed.) The Theory of Chemical Reaction Dynamics, Reidel, Dordrecht, 1986, p 47.

    Google Scholar 

  124. F. London, Z. Elektrochem. 35, 552 (1929).

    CAS  Google Scholar 

  125. H. Eyring and J. Polanyi, Naturwissenschaften 18, 914 (1930)

    CAS  Google Scholar 

  126. H. Eyring and J. Polanyi, Z. Phys. Chem. B12, 279 (1931).

    Google Scholar 

  127. S. Sato, J. Chem. Phys. 23, 592 (1955).

    CAS  Google Scholar 

  128. C. A. Parr and D. G. Truhlar, J. Phys. Chem. 75, 1844 (1971).

    Google Scholar 

  129. W. J. Hehre, L. Radom, P. v. R. Schleyer, and J. A. Pople, Ab Initio Molecular Orbital Theory, Wiley, New York. 1986.

    Google Scholar 

  130. C. W. Bauschlicher, S. R. Langhoff, and P. R. Taylor, Adv. Chem. Phys. 77, 103 (1990) .

    CAS  Google Scholar 

  131. D. L. Bunker and M. D. Pattengill, J. Chem. Phys. 53, 3041 (1970).

    CAS  Google Scholar 

  132. D. R. McLaughlin and D. L. Thompson, J. Chem. Phys. 59, 4393 (1973).

    CAS  Google Scholar 

  133. L. M. Raff, J. Chem. Phys. 60, 2220 (1974).

    CAS  Google Scholar 

  134. N. Sathvarrurthy and L. M. Raff, J. Chem. Phys. 63, 464 (1975).

    Google Scholar 

  135. D. G. Ruhlar and C. J. Horowitz, J. Chem. Phys. 68, 2466 (1978)

    Google Scholar 

  136. D. G. ruhlar and C. J. Horowitz, 71, 1514E (1979).

    Google Scholar 

  137. R. Schinke and W. A. Lester, J. Chem. Phys. 70, 4893 (1979)

    CAS  Google Scholar 

  138. R. Schinke and W. A. Lester, J. Chem. Phys. 72, 3754 (1980).

    CAS  Google Scholar 

  139. S. P. Walch and T. H. Dunning, J. Chem. Phys. 72, 1303 (1980).

    CAS  Google Scholar 

  140. G. C. Schatz and H. Elgersma, Chem. Phys. Lett. 73, 21 (1980).

    CAS  Google Scholar 

  141. J. N. Murrell, S. Carter, S. C. Farantos, P. Huxley, A. J. C. Varandas, Molecular Potential Energy Functions, Wiley, New York, 1984.

    Google Scholar 

  142. A. J. C. Varandas, F. B. C. A. Mead, D. G. Truhlar, and N. C. Blais, J. Chem. Phys. 86, 6258 (1987).

    CAS  Google Scholar 

  143. G. C. Schatz, Rev. Mod. Phys. 61, 669 (1989).

    CAS  Google Scholar 

  144. N. C. Blais and D. G. Truhlar, J. Chem. Phys. 61, 4186 (1974)

    CAS  Google Scholar 

  145. N. C. Blais and D. G. Truhlar, 65, 3803E (1976).

    Google Scholar 

  146. D. G. Truhlar, B. C. Garrett, and N. C. Blais, J. Chem. Phys. 80, 232 (1984).

    CAS  Google Scholar 

  147. R. Steckler, D. G. Truhlar, and B. C. Garrett, J. Chem. Phys. 83, 2870 (1985).

    CAS  Google Scholar 

  148. N. C. Blais and D. G. Truhlar, J. Chem. Phys. 83, 5546 (1985).

    CAS  Google Scholar 

  149. A. D. Isaacson, J. Phys. Chem. 96, 531 (1992).

    CAS  Google Scholar 

  150. Y.-P. Liu, D.-h. Lu, A. Gonzalez-Lafont, D. G. Truhlar, and B. C. Garrett, J. Am. Chem. Soc. 115, 7806 (1993).

    CAS  Google Scholar 

  151. J. A. Pople and D. L. Beveridge, Approximate Molecular Orbital Theory, Mc-Graw Hill, New York, 1970.

    Google Scholar 

  152. M. J. S. Dewar and D. M. Storch, J. Am. Chem. Soc. 107, 3898 (1985).

    CAS  Google Scholar 

  153. T. N. Truong, D.-h. Lu, G. C. Lynch, Y.-P. Liu, V. S. Melissas, J. J. P. Stewart, R. Steckler, B. C. Garrett, A. D. Isaacson, A. Gonzalez-Lafont, S. N. Rai, G. C. Hancock, T. Joseph, and D. G. Truhlar, Comput. Phys. Commun. 75, 143 (1993).

    CAS  Google Scholar 

  154. R. C. Bingham, M. J. S. Dewar, and D. H. Lo, J. Am. Chem. Soc. 97, 1294 (1975).

    CAS  Google Scholar 

  155. M. J. S. Dewar and W. Thiel, J. Am. Chem. Soc. 99, 4899 (1977).

    CAS  Google Scholar 

  156. M. J. S. Dewar, E. G. Zoebisch, E. F. Healy, and J. J. P. Stewart, J. Am. Chem. Soc. 107. 3902 (1985).

    CAS  Google Scholar 

  157. J. J. P. Stewart, J. Comput. Chem. 10, 209, 221 (1989).

    CAS  Google Scholar 

  158. A. Gonzalez-Lafont, T. N. Truong, and D. G. Truhlar, J. Phys. Chem. 95, 4618 (1991).

    CAS  Google Scholar 

  159. A. A. Viggiano, J. Paschkewitz, R. A. Morris, J. F. Paulson, A. Gonzalez-Lafont, and D. G. Truhlar, J. Am. Chem. Soc. 113, 9404 (1991).

    CAS  Google Scholar 

  160. B. C. Garrett and C. F. Melius, in S. J. Formosinho, I. G. Csizmadia, and L. G. Arnaut (eds.) Theoretical and Computational Models for Organic Chemistry, Kluwer, Dordrecht, 1991, p 35.

    Google Scholar 

  161. A. D. Isaacson, L. Wang, and S. Scheiner, J. Phys. Chem. 97, 1765 (1993).

    CAS  Google Scholar 

  162. JANAF Thermochemical Tables, Natl. Stand. Ref. Data Ser. Natl. Bur. Stand. 37, (1970). (The exoergicity is obtained by removing zero point energy contributions from reactants and products.)

    Google Scholar 

  163. I. Glassman, Combustion, Academic Press, New York, 1977.

    Google Scholar 

  164. J. R. Creighton, J. Phys. Chem. 81, 2520 (1977).

    CAS  Google Scholar 

  165. N. J. Brown, K. H. Eberius, R. M. Fristom, K. H. Hoyermann, and H. Gg. Wagner, Combust. Flame 33, 151 (1978).

    CAS  Google Scholar 

  166. J. Warnatz, Sandia National Laboratories Report No. SAND83–8606, Livermore, CA (1983).

    Google Scholar 

  167. A. R. Ravishankara, J. M. Nicovich, R. L. Thompson, and F. P. Tully, J. Phys. Chem. 85, 2498 (1981).

    CAS  Google Scholar 

  168. G. Dixon-Lewis and D. J. Williams, Comp. Chem. Kinet. 17, 1 (1977).

    CAS  Google Scholar 

  169. N. Cohen and K. R. Westberg, Chemical Kinetic Data Sheets for High-Temperature Chemical Reactions, Aerospace Report No. ATR-82(7888)-3, El Segundo, CA, 1982.

    Google Scholar 

  170. J. E. Spencer, H. Endo, and G. P. Glass, Proc. 16th Symp. (Int.) Combustion, Combustion Institute, Pittsburgh, 1976, p 829.

    Google Scholar 

  171. G. C. Light and J. H. Matsumoto, Chem. Phys. Lett. 58, 578 (1978).

    CAS  Google Scholar 

  172. W Steinert, Ph.D. thesis. University of Göttingen, 1979.

    Google Scholar 

  173. R. Zellner and W. Steinert, Chem. hys. Lett. 81, 568 (1981).

    CAS  Google Scholar 

  174. G. P. Glass and B. K. Chaturvedi, J. Chem. Phys. 75, 2749 (1981).

    CAS  Google Scholar 

  175. D. G. Truhlar and A. D. Isaacson, J. Chem. Phys. 77, 3516 (1982).

    CAS  Google Scholar 

  176. M. H. Mok and J. C. Polanyi, J. Chem. Phys. 53, 4588 (1970).

    CAS  Google Scholar 

  177. S. P. Walch, T. H. Dunning Jr., F. W. Bobrowicz, and R. C. Raffenetti, J. Chem. Phys. 72, 406 (1980).

    CAS  Google Scholar 

  178. T. H. Dunning, S. P. Walch, and A. F. Wagner, in D. G. Truhlar (ed.) Potential Energy Surfaces and Dynamics Calculations, Plenum, New York, 1981, p 329.

    Google Scholar 

  179. G. C. Schatz and S. P. Walch, J. Chem. Phys. 72, 776 (1980).

    CAS  Google Scholar 

  180. G. C. Schatz and H. Elgersma, in D. G. Truhlar (ed.) Potential Energy Surfaces and Dynamics Calculations, Plenum, New York, 1981, p 311.

    Google Scholar 

  181. G. C. Schatz, J. Chem. Phys. 74, 1133 (1981).

    CAS  Google Scholar 

  182. O. Rashed and N. J. Brown, J. Chem. Phys. 82, 5506 (1985).

    CAS  Google Scholar 

  183. A. D. Isaacson, M. T. Sund, S. N. Rai, and D. G. Truhlar, J. Chem. Phys. 82, 1338 (1985).

    CAS  Google Scholar 

  184. G. Herzberg, Molecular Spectra and Molecular Structure. I. Spectra of Diatomic Molecules, Van Nostrand, Princeton, 1950.

    Google Scholar 

  185. R. J. Bartlett, I. Shavitt, and G. D. Purvis, J. Chem. Phys. 71, 281 (1979).

    CAS  Google Scholar 

  186. E. Kraka and T. H. Dunning, Jr., to be published.

    Google Scholar 

  187. T. H. Dunning, Jr., private communication.

    Google Scholar 

  188. D. G. Truhlar, unpublished calculations.

    Google Scholar 

  189. E. Kraka and T. H. Dunning, Jr., private communication.

    Google Scholar 

  190. A. D. Isaacson and S.-C. Hung, J. Chem. Phys. 101, 3928 (1994).

    CAS  Google Scholar 

  191. G. Simons, R. Parr, and J. M. Finlan, J. Chem. Phys. 59, 3229 (1973)

    CAS  Google Scholar 

  192. G. Simons. ibid. 61. 369 (1974).

    CAS  Google Scholar 

  193. L. B. Harding and W. C. Ermler, J. Comput. Chem. 6, 13 (1985)

    CAS  Google Scholar 

  194. W. C. Ermler, H. C. Hsieh, and L. B. Harding, Comput. Phys. Commun. 51, 257 (1988).

    CAS  Google Scholar 

  195. Statistical Analysis System, Release 6.06, SAS Institute, Inc., Cary, NC, 1989.

    Google Scholar 

  196. W. L. Hase, G. Mrowka, R. J. Brudzynski, and C. S. Sloane, J. Chem. Phys. 69, 3548 (1978).

    CAS  Google Scholar 

  197. W. L. Hase and K. C. Bhalla, J. Chem. Phys. 75, 2807 (1981).

    CAS  Google Scholar 

  198. R. J. Duchovic, W. L. Hase, and H. B. Schlegel, J. Phys. Chem. 88, 1339 (1984).

    CAS  Google Scholar 

  199. Z. Latajka and S. Scheiner, Int. J. Quantum. Chem. 29, 285 (1986).

    CAS  Google Scholar 

  200. S. Scheiner and Z. Latajka, J. Phys. Chem. 91, 724 (1987).

    CAS  Google Scholar 

  201. W. J. Hehre, R. Ditchfield, and J. A. Pople, J. Chem. Phys. 56, 2257 (1972).

    CAS  Google Scholar 

  202. M. J. Frisch, M. Head-Gordon, H. B. Schlegel, K. Raghavachari, J. S. Binkley, C. Gonzalez, D. J. DeFrees, D. J. Fox, R. A. Whiteside, R. Seeger, C. F. Melius, J. Baker, R. Martin, L. R. Kahn, J. J. P. Stewart, E. M. Fluder, S. Topiol, and J. A. Pople, GAUSSIAN 88, Gaussian, Inc., Pittsburgh, PA, 1988.

    Google Scholar 

  203. D. G. Truhlar, N. J. Kilpatrick, and B. C. Garrett, J. Chem. Phys. 78, 2438 (1983).

    CAS  Google Scholar 

  204. A. Gonzalez-Lafont, T. N. Truong, and D. G. Truhlar, J. Chem. Phys. 95, 8875 (1991).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Isaacson, A.D. (1995). Using the Reaction Path Concept to Obtain Rate Constants From ab initio Calculations. In: Heidrich, D. (eds) The Reaction Path in Chemistry: Current Approaches and Perspectives. Understanding Chemical Reactivity, vol 16. Springer, Dordrecht. https://doi.org/10.1007/978-94-015-8539-2_9

Download citation

  • DOI: https://doi.org/10.1007/978-94-015-8539-2_9

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-4586-7

  • Online ISBN: 978-94-015-8539-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics