Logic Finite Automata

  • Klaus U. Schulz
  • Dov M. Gabbay
Part of the Synthese Library book series (SYLI, volume 247)


A standard finite state automaton is an abstract machine which may take a finite number of states. Some states are marked as accepting states, and an initial state is specified in which the machine starts, faced with a word w over a finite input alphabet ∑. A finite transition table specifies the possibilities to change states, consuming a certain prefix of the actual rest of the input word. The automaton accepts a word if it is possible to eventually reach an accepting state with the empty word, choosing appropriate transitions.


Turing Machine Function Symbol Transition Rule Finite State Automaton Input Word 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abramson, H. and Dahl, V.: 1989, Logic Grammars, New York: Springer VerlagCrossRefGoogle Scholar
  2. Aho, A.V.: 1968, “Indexed Grammars”, Journal of the ACM 15, pp. 647–671CrossRefGoogle Scholar
  3. Apt, K.R.: 1990, “Logic Programming”, in: J. van Leeuwen (ed.), Handbook of Theoretical Computer Science, Vol. B Chapter 10 Amsterdam: North-Holland, pp. 495–574Google Scholar
  4. van Benthem, J.: 1985, Semantic Automata, Report No. CSLI-85–27, Center for the Study of Language and Information, Stanford UniversityGoogle Scholar
  5. Borger, E.: 1986, Berechenbarkeit, Komplexität, Logik, 2. Edition. Braunschweig/Wiesbaden: ViewegGoogle Scholar
  6. Colmerauer, A.: 1978, “Metamorphosis Grammars”, in: L. Bole (ed.), Natural Language Communication with Computers, Berlin: Springer Verlag, pp. 133–188CrossRefGoogle Scholar
  7. Colmerauer, A.: 1988, Final Specification for Prolog III, Esprit Reference Number P1219(1106), ManuscriptGoogle Scholar
  8. Francez, N. and Shemesh, Y.: 1991, Finite-State Datalog Automata and Relational Languages, Technical Report 669, Haifa: Israel Institute of TechnologyGoogle Scholar
  9. Gabbay, D.M. and Schulz, K.U.: 1991, Logic Finite Automata and Constraint Logic Finite Automata, CIS-Bericht 91–45, University of MunichGoogle Scholar
  10. Gazdar, G.: 1985, Applicability of indexed grammars to natural languages. Report No. CSLI-85–34, Center for the Study of Language and Information, Stanford UniversityGoogle Scholar
  11. Ginsburg, S. and Spanier, E.: 1966, “Semi-Groups, Pressburger Formulas and Languages”, Pacific Journal of Mathematics 16, pp. 285–296CrossRefGoogle Scholar
  12. Gross, M. and Perrin, D. (eds): 1989, Electronic Dictionaries and Automata in Computational Linguistics, Berlin: Springer Verlag, LNCS 377Google Scholar
  13. Hausser, D.: 1989, Computation of Language, Berlin, Heidelberg: Springer Series on Symbolic Computation (Artificial Intelligence)CrossRefGoogle Scholar
  14. Hopcroft, J.E. and Ullman, J.D.: 1979, Introduction to Automata Theory, Languages, and Computation, Addison-WesleyGoogle Scholar
  15. Jaffar, J. and Lassez, J.-L.: 1987, “Constraint Logic Programming”, Proceedings of the 14th ACM Symposium on the Principles of Programming Languages, pp. 111–119Google Scholar
  16. Lang, B.: 1988, Complete Evaluation of Horn Clauses: an Automata Theoretic Approach, Research Note, Les Chesnay, France: INRIAGoogle Scholar
  17. Lassez, J.-L., Maher, M.J. and Marriot, K.G.: 1986, “Unification revisitedy” in: Proceedings Workshop on Found, of Logic and Functional Programming, Trento, LNCS 306, Berlin: Springer VerlagGoogle Scholar
  18. Lewis, H. and Papadimitriou, C: 1983, Elements of the Theory of Computation, Englewood CliffsGoogle Scholar
  19. Lloyd, J.W.: 1984, Foundations of Logic Programming, Berlin: Springer VerlagCrossRefGoogle Scholar
  20. Paterson, M.S. and Wegman, M.N.: 1978, “Linear Unification”, Journal of Computer and System Sciences 16, No. 2, pp. 158–167CrossRefGoogle Scholar
  21. Pereira, F.C.N, and Warren, D.H.D.: 1980, “Definite Clause Grammars for Language Analysis — A Survey of the Formalism and a Comparison with Transition Networks”, Artificial Intelligence 13, pp. 231–278CrossRefGoogle Scholar
  22. Pereira, F.C.N, and Warren, D.H.D.: 1983, “Parsing as Deduction”, Proceedings of the 21st Annual Meeting of the Association for Computational Linguistics, Cambridge, MA, pp. 137–144Google Scholar
  23. Roche, E.: 1992, “Looking for Syntactic Patterns in Texts” COMPLEX’92, Papers in Computational Lexicography, BudapestGoogle Scholar
  24. Shieber, S.M.: 1985, “Evidence against the Context-Freeness of Natural Language”, Linguistics and Philosophy 8, pp. 333–343CrossRefGoogle Scholar
  25. Sommerhaider, R. and Van Westrhenen, S.C.: 1988, The Theory of Com-putability, Addison-WesleyGoogle Scholar
  26. Tarau, P. and Boyer, M.: 1990, “Elementary Logic Programs”, in: P. Deransart and J. Malusynski (eds), Proceedings of Programming Languages Implementation and Logic Programming, Berlin, Heidelber: Springer Verlag, LNCS 456, pp. 159–173CrossRefGoogle Scholar
  27. Tarau, P.: 1993, WAM-optimization in BinProlog: towards a realistic Continuation Passing Prolog Engine, Tech. Report TR92–03, Dept. d’Informatique, Universite de MonctonGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1995

Authors and Affiliations

  • Klaus U. Schulz
    • 1
  • Dov M. Gabbay
    • 2
  1. 1.Centrum für Informations- und Sprachverarbeitung (CIS)University of MunichMunichGermany
  2. 2.Department of ComputingImperial CollegeLondonUK

Personalised recommendations