Implicit and Explicit Definability in Modal and Temporal Logics

  • Larisa Maksimova
Part of the Synthese Library book series (SYLI, volume 247)


Interpolation and definability play an important part in the mathematical logic. We consider different versions of these properties. Let L be any propositional logic.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Beth, W.E.: 1953, “On Padoa’s method in the theory of definitions”, Indag. Math. Vol.15, no.4, pp. 330–339Google Scholar
  2. Czelakowski, J.: 1982, “Logical matrices and the amalgamation property”, Studia Logica Vol.41, no.4, pp. 329–341CrossRefGoogle Scholar
  3. Gabbay, D.M.: 1972, “Craig’s interpolation theorem for modal logic”. Conference in Math. Logic, London’70, Berlin, Springer, pp. 111–127Google Scholar
  4. Gurevich, Y.: 1984, “Toward logic tailored for computational complexity”, Computation and proof theory. Lecture Notes in Math., 1104, Berlin, Springer, pp. 175–216Google Scholar
  5. Henkin, L., Monk, J.D., and Tarski, A.: 1985, Cylindric Algebras, Part II. North-Holland, AmsterdamGoogle Scholar
  6. Kawai, H.: 1982, “Eine Logic Erster Stufe mit einem infinitaren Zeitoperator”, Zeitschrift für mathematischer Logik und Grundlagen Mathematik 28, pp. 173–180CrossRefGoogle Scholar
  7. Kroeger, F.: 1987, “Temporal logics of programs”, EATS Monograph on Theoretical Computer Science, Berlin, SpringerCrossRefGoogle Scholar
  8. Maksimova, L.L.: 1979, “Interpolation theorems in modal logics and amalgamated varieties of topoboolean algebras”, (in Russian). Algebra i Logika 18, no.5, pp. 556–586CrossRefGoogle Scholar
  9. Maksimova, L.L.: 1982, “Failure of the interpolation property in modal counterparts of Dummett’s logic”, (in Russian). Algebra i Logika 21, no.6 pp. 690–694CrossRefGoogle Scholar
  10. Maksimova, L.L.: 1989a, “Interpolation in modal logics of infinite slice containing K4”, (in Russian). Matematiceskaya logika i algoritmiceskie problemy, Novosibirsk, Nauka (Sib. Div.), pp. 73–91Google Scholar
  11. Maksimova, L.L.: 1989b, “Definability theorems in normal extensions of the provability logic”, Studia Logica 48, no.4, pp. 495–507CrossRefGoogle Scholar
  12. Maksimova, L.L.: 1989c, “Interpolation, the Beth property and the tense logic of ‘tomorrow’” Preprint, Institute of Mathematics, Sib. Div. of Acad. Sei. of USSR, NovosibirskGoogle Scholar
  13. Maksimova, L.L.: 1990, “Temporal logics with discrete moments of time and the Beth property”, in: Proceedings of the 4th Asian Logical Conference, Sept. 1990, Tokyo, Japan, pp. 31–34Google Scholar
  14. Manna, Z. and Pnueli, A.: 1983, “Verification of concurrent programs: a temporal proof system”, in: Foundations of Computer Science TV (Math. Centre tracts), Amsterdam, pp. 163–255Google Scholar
  15. Manna, Z. and Wolper, P.: 1982, “Synthesis of communicating processes from temporal logic specifications”, in: Logic of Programs Proceedings Conference New York’81, D. Kozen (ed.), Springer LNCS, 131, pp. 253–281CrossRefGoogle Scholar
  16. Nemeti, I.: 1982, “Nonstandard Dynamic Logic”, in: Logic of Programs. Proceedings Conference New York’81, D. Kozen (ed.), Springer LNCS, 131, 1982, pp. 311–348CrossRefGoogle Scholar
  17. Smorynski, C.:1978, “Beth’s theorem and self-referential sentences”, In: Logic Colloquium’77, North-Holland, Amsterdam, pp. 253–261CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1995

Authors and Affiliations

  • Larisa Maksimova
    • 1
  1. 1.Institute of MathematicsSiberian Division of Russian Academy of SciencesNovosibirskRussia

Personalised recommendations