Skip to main content

Transport, Accumulation and Transformation Processes

  • Chapter
Risk Assessment of Chemicals

Abstract

After entering the environment, chemicals are transported and may be transformed into other chemicals. Transport can occur within a compartment, such as in air or in soil, or between compartments (between air and water, air and soil or water and soil). Transformation processes in the environment involve chemical degradation (e.g. hydrolysis) or bacteria (biodegradation). Chemicals may also be transformed within organisms and this is called biotransformation. In most cases, degradation is beneficial because less hazardous substances are formed. However, some examples are known in which more hazardous compounds are formed during degradation. Usually, toxic effects only occur when chemicals are inside organisms. Therefore, understanding the uptake of chemicals (also called bioaccumulation) is of the utmost importance in risk assessment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Mackay, D. 1991. Multimedia Environmental Models. The Fugacity Approach. Lewis Publ., Chelsea, MI.

    Google Scholar 

  2. Junge, C.E. 1977. Basic considerations about trace constituents in the atmosphere in relation to the fate of global pollutants. In LH. Suffet, ed., Fate of Pollutants in the Air and Water Environment. Part I, Advances in Environmental Science and Technology, Vol. 8. Wiley Intersci. New York, NY, pp. 7–25.

    Google Scholar 

  3. Neely, W.B. 1982. The definition and use of mixing zone. Environ. Sci. Technol. 16: 519A - 5121A.

    Google Scholar 

  4. Csanady, G.T. 1973. Turbulent Diffusion in the Environment. Geophysics and Astrophysics Monographs, Vol. 3. D. Reidel Publ. Co., Dordrecht, The Netherlands.

    Google Scholar 

  5. Fischer, H.B., J. Imberger, E.J. List, R.C.Y. Koh and R.H. Brooks. 1979. Mixing in Inland and Coastal Waters. Academic Press, New York, NY.

    Google Scholar 

  6. Van Mazijk, A. and R.G. Veldkamp. 1989. Water kwaliteits modelering oppervlaktewater. Collegenotes, Technical University, Delft, The Netherlands.

    Google Scholar 

  7. Elder, J.W. 1959. The dispersion of marked fluid in turbulent shear flow. J. Fluid Mech. 5: 554–560.

    Google Scholar 

  8. De Greef, J. and D. Van De Meent. 1989. Beoordelingssysteem nieuwe stoffen: Transportroutines, een receptuur voor het schatten van de snelheid van het transport in oppervlaktewater. Report 958701001. National Institute for Public Health and Environmental Protection, Bilthoven, The Netherlands.

    Google Scholar 

  9. Whitman, W.G. 1923. The two-film theory of gas absorption. Chem. Metal Eng. 29: 146–150.

    CAS  Google Scholar 

  10. Liss, P.S. and P.G. Slater, 1974. Flux of gases across the air-sea interface. Nature 247: 181–184.

    Article  CAS  Google Scholar 

  11. Fowler, D. 1980. Removal of sulphur and nitrogen compounds from the atmosphere and by dry deposition. In D. Drablos and A. Tollan eds., Ecological impact of acid precipitation, Oslo-As, Norway, pp. 22–32.

    Google Scholar 

  12. Thomas, R.G. 1990. Volatilazation from soil. In W.J. Lyman, W.F. Reehl and D.S. Rosenblatt, eds. Handbook of Chemical Estimation Methods. American Chemical Society, Washington, DC, pp. 16:1–16:50.

    Google Scholar 

  13. Schwarzenbach, R.P. 1992. Phase-transfer of organic pollutants in the environment. Course on environmental chemistry of organic pollutants. European Environmental Research Organization, Wageningen, The Netherlands.

    Google Scholar 

  14. Schwarzenbach, R.P., P.M. Gschwend and D.M. Imboden. 1993. Environmental Organic Chemistry. John Wiley, New York, NY.

    Google Scholar 

  15. Mackay, D., Paterson, S. Cheung, B. and Neely, W.B. 1985. Evaluating the environmental behaviour of chemicals with a Level-III model. Chemosphere 14: 335–374.

    CAS  Google Scholar 

  16. Block, M. 1991. Uptake of cadmium in fish. Effects of xanthates and diethyldithiocarbamate. Ph.D. Thesis, Uppsala University, Uppsala, Sweden.

    Google Scholar 

  17. Sijm, D.T.H.M., P. Pärt and A. Opperhuizen. 1993. The influence of temperature on the uptake rate constants of hydrophobic compounds determined by the isolated perfused gills of rainbow trout (Oncorhynchus mykiss). Aquat. Toxicol. 25: 1–14.

    Article  CAS  Google Scholar 

  18. Tas, J.W. 1993. Fate and effects of triorganotins in the aqueous environment. Bioconcentration kinetics, lethal body burdens, sorption and physicochemical properties. Ph.D. Thesis, University of Utrecht, The Netherlands.

    Google Scholar 

  19. Niimi, A.J. 1987. Biological half-lives of chemicals in fishes. Rev. Environ. Contam. Toxicol. 99: 1–46.

    Article  CAS  Google Scholar 

  20. Opperhuizen, A. 1991. Bioaccumulation kinetics: experimental data and modelling. In G. Angeletti and A. BjOrseth, eds., Organic Micropollutants in the Aquatic Environment, Proc. Sixth European Symp. Lisbon, Portugal, 1990. Kluwer Acad. Publ., Dordrecht, The Netherlands, pp. 61–70.

    Google Scholar 

  21. Leland, H.V. and J.S. Kuwabara. 1985. Trace metals. In G.M. Rand and S.R. Petrocelli, eds., Fundamentals of Aquatic Toxicology. Hemisphere, Washington, DC, pp. 374–415.

    Google Scholar 

  22. Organization for Economic Co-operation and Development. 1981. OECD Guidelines for the testing of chemicals. Bioaccumulation: Sequential static fish test (305A).

    Google Scholar 

  23. American Society for Testing and Materials. 1985. Standard practice for conducting bioconcentration tests with fishes and saltwater bivalve molluscs. Paper El02284. ASTM, Philadelphia, PA.

    Google Scholar 

  24. U.S. Environmental Protection Agency. 1989. Oyster bioconcentration test. Code of Federal Regulations, 40CFR Ch. 1, Section 797. 1830, edition dated 7 January 1989. U.S. Environmental Protection Agency, Washington, DC.

    Google Scholar 

  25. Gobas, EA.P.C., A. Opperhuizen and O. Hutzinger. 1986. Bioconcentration of hydrophobic chemicals in fish: relationship with membrane permeation. Environ. Toxicol. Chem. 5: 637–646.

    Article  CAS  Google Scholar 

  26. Opperhuizen, A., H.W.J. Damen, G.M. Asyee and J.M.D. Van Der Steen. 1987. Uptake and elimination by fish of polydimethylsiloxanes (silicones) after dietary and aqueous exposure. Toxicol. Environ. Chem. 13: 265285.

    Google Scholar 

  27. Saarikoski, J., R. Lindström, M. Tyynelä and M. Viluksela. 1986. Factors affecting the absorption of phenolics and carboxylic acids in the guppy (Poecilia reticulata). Ecotox. Environ. Saf. 11: 158–173.

    Article  CAS  Google Scholar 

  28. Sijm, D.T.H.M. and A. Opperhuizen. 1989. Biotransformation of organic chemicals by fish: a review of enzyme activities and reactions. In O. Hutzinger, ed., Handbook of Environmental Chemistry, 2E, Reactions and Processes. Springer-Verlag, Heidelberg, Germany, pp. 163–235.

    Google Scholar 

  29. Opperhuizen, A. 1992. Bioconcentration and biomagnification: is a distinction necessary? In R. Nagel and R. Loskill, eds., Bioaccumulation in Aquatic Systems. Contribution to the Assessment. Proceedings of an international workshop, Berlin, VCH Publishers, Weinheim, Germany, pp. 67–80.

    Google Scholar 

  30. Sijm, D.T.H.M., W. Seinen and A. Opperhuizen. 1992. Life-cycle biomagnification study in fish. Environ. Sci. Technol. 26: 2162–2174.

    Article  CAS  Google Scholar 

  31. Opperhuizen, A. and S.M. Schrap. 1988. Uptake efficiencies of two polychlorobiphenyls in fish after dietary exposure to five different concentrations. Chemosphere 17: 253–262.

    Article  CAS  Google Scholar 

  32. Schrap, S.M. 1991. Bioavailability of organic chemicals in the aquatic environment. Comp. Biochem. Physiol. 100C: 13–16.

    CAS  Google Scholar 

  33. Lee II, H. 1991. A clam’s eye view of the bioavailability of sediment-associated pollutants. In R. Baker, ed., Organic Substances and Sediments in Water, Volume III: Biological, Lewis Publisher Inc., Chelsea, MI, pp. 73–93.

    Google Scholar 

  34. Morrison, I.N. and A.S. Cohen. 1980. Plant uptake, transport and metabolism. In O. Hutzinger, ed., Handbook of Environmental Chemistry, 2A. Reactions and Processes, Springer-Verlag, Heidelberg, Germany, pp. 193–219.

    Google Scholar 

  35. Briggs, G.G., R.H. Bromilow and A.A. Evans. 1982. Relationships between lipophilicity and root uptake and translocation of non-ionised chemicals by barley. Pestic. Sci. 13: 495–504.

    Article  CAS  Google Scholar 

  36. Paterson, S., D. Mackay, D. Tam and W.Y. Shiu. 1990. Uptake of organic chemicals by plants: a review of processes, correlations and models. Chemosphere 21: 297331.

    Google Scholar 

  37. Müller, J.F., D.W. Hawker and D.W. Connell. 1994. Calculation of bioconcentration factors of persistent hydrophobic compounds in the air/vegetation system. Chemosphere 29: 623–640.

    Article  Google Scholar 

  38. Belfroid, A.C. 1994. Toxicokinetics of hydrophobic chemicals in earthworm. Validation of the equilibrium partitioning theory. Ph.D. Thesis, University of Utrecht, The Netherlands.

    Google Scholar 

  39. Janssen, M.P.M., A. Bruins, T.H. De Vries and N.M. Van Straalen. 1991. Comparison of cadmium kinetics in four soil arthropod species. Arch. Environ. Contam. Toxicol. 20: 305–312.

    Article  CAS  Google Scholar 

  40. Posthuma, L. and N.M. Van Straalen. 1993. Heavy-metal adaptation in terrestrial invertebrates: a review of occurrence, genetics, physiology and ecological consequences. Comp. Biochem. Physiol. 106C: 11–38.

    Google Scholar 

  41. Ma, W.C. 1987. Heavy metal contamination in the mole, Talpa europaea, and earthworms as an indicator of metal bioavailability in terrestrial environments. Bull. Environ. Contam. Toxicol. 39: 933–938.

    Article  CAS  Google Scholar 

  42. Ma, W.C., W. Denneman and J. Faber. 1991. Hazardous exposure of ground-living small animals to cadmium and lead in contaminated terrestrial ecosystems. Arch. Environ. Contam. Toxicol. 20: 266–270.

    Article  CAS  Google Scholar 

  43. Norstrom, R.J., A.E. McKinnon and A.S. DeFreitas. 1979. A bioenergetics based model for pollutant accumulation in fish: simulation of PCB and methylmercury residue levels in Ottawa river yellow perch (Perca flavescens). J. Fish. Res. Board Can. 33: 248–267.

    Article  Google Scholar 

  44. USES. 1994. Uniform system for the evaluation of substances, version 1.0. National Institute of Public Health and Environmental Protection, Ministry of Housing, Spatial Planning and the Environment, Ministry of Welfare, Health and Cultural Affairs. VROM distribution No. 11144/150, The Hague, The Netherlands.

    Google Scholar 

  45. Travis, C.C. and A.D. Arms. 1988. Bioconcentration of organics in beef, milk and vegetation. Environ. Sci. Technol. 22: 271–274.

    Article  CAS  Google Scholar 

  46. Burns, L.A. and G.L. Baughman. 1985. Fate modelling. In G.M. Rand and S.R. Petrocelli, eds. Fundamentals of Aquatic Toxicology. Hemisphere Publ. Corp., Washington, DC, pp. 558–584.

    Google Scholar 

  47. Mabey, W. and T. Mill. 1978. Critical review of hydrolysis of organic compounds in water under environmental conditions. J. Phys. Chem. Ref Data. 7: 383–415.

    Article  CAS  Google Scholar 

  48. Haag, W.R. and C.C.D. Yao. 1992. Rate constants for reaction of hydroxyl radicals with several drinking water contaminants. Environ. Sci. Technol. 26: 1005–1013.

    Article  CAS  Google Scholar 

  49. Mill, T. 1980. Chemical and photo oxidation. In O. Hutzinger, ed., The Handbook of Environmental Chemistry, Volume2, part A: Reactions and Processes. Springer Verlag, Berlin, Germany, pp. 77–105.

    Google Scholar 

  50. Wolfe, N.L. and D.L. Macalady. 1992. New perspectives in aquatic redox chemistry: abiotic transformations of pollutants in groundwater and sediments. J. Contam. Hydrol. 9: 17–34.

    Article  CAS  Google Scholar 

  51. Organization for Economic Co-operation of Development. 1986. OECD guidelines for the testing of chemicals. Hydrolysis as function of pH. Guideline 111. OECD, Paris, France.

    Google Scholar 

  52. Zepp, R.G. 1982. Experimental Approaches to Environmental Photochemistry. In: O. Hutzinger, ed., The Handbook of Environmental Chemistry, 1st ed. Vol. 2/part B. Springer-Verlag, Berlin, Germany, pp. 19–41.

    Google Scholar 

  53. Bolt, T.L. and G.M. Bruggewert. 1976. Soil Chemistry. Part A: Basic Elements. Elsevier Sci. Publ., Amsterdam, The Netherlands.

    Google Scholar 

  54. Thauer, R.K., K. Jungermann and K. Decker. 1977. Energy conservation in chemoautotrophic anaerobic bacteria. Bacteriol. Rev. 41: 100–148.

    CAS  Google Scholar 

  55. Horvath, R.S. 1972. Microbial cometabolism and the degradation of organic compounds in nature. Bact. Rev. 36: 146–155.

    CAS  Google Scholar 

  56. Swisher, R.D. 1987. Surfactant Biodegradation. Marcel Dekker, New York, NY.

    Google Scholar 

  57. Tiedje, J.M., Boyd, S.A. and Fathepure, B.Z. 1987. Anaerobic degradation of chlorinated aromatic hydrocarbons. Journ. Ind. Microbiol. Suppl. 1. Developments in Industrial Microbiology 27: 117–127.

    CAS  Google Scholar 

  58. Alexander, M. 1973. Nonbiodegradable and other recalcitrant molecules–Biotechnology report. Biotechol. Bioengineer. 15: 611–647.

    Article  CAS  Google Scholar 

  59. Klecka, G.M. 1985. Biodegradation. In W.B. Neely and G.E. Blau, eds. Environmental Exposure from Chemicals, Vol. 1. CRC Press Inc., Boca Raton, FL, pp. 109–155.

    Google Scholar 

  60. Organization for Economic Co-operation and Development. 1976. Proposed method for the determination of the biodegradability of surfactants used in synthetic detergents. OECD, Paris, France.

    Google Scholar 

  61. Organization for Economic Co-operation and Development. 1981 and 1993. OECD guidelines for the testing of chemicals. Degradation and Accumulation. OECD, Paris, France.

    Google Scholar 

  62. King, E.F. 1981. Biodegradability testing. Notes on water research 28. Water Research Centre, Medmenham, UK.

    Google Scholar 

  63. Phillips, D.J.H. 1993. Bioaccumulation. In P. Calow, ed., Handbook of Ecotoxicology, Vol. 1. Blackwell Sci. Publ., Oxford, UK. pp. 378–396.

    Google Scholar 

  64. Doull, J., C.D. Klaassen and M.O. Amdur, eds., 1986. Casarett and Doull’s Toxicology, the Basic Science of Poisons. Macmillan Publ. Comp., New York, NY.

    Google Scholar 

  65. Lech, J.J. and M.J. Vodicnik. 1985. Biotransformation. In G.M. Rand and S.R. Petrocelli, eds., Fundamentals of Aquatic Toxicology. Hemisphere, Washington, DC, pp. 526–557.

    Google Scholar 

  66. Homburger, F., J.A. Hayes and E.W. Pelikan. 1983. A Guide to General Toxicology. Karger/Base, New York, NY.

    Google Scholar 

  67. Kimbrough, R.D. and A.A. Jensen, eds., 1989. Halogenated Biphenyls, Terphenyls, Naphtalenes, Dibenzodioxins and Related Products. Elsevier Sci. Publ., Amsterdam, The Netherlands.

    Google Scholar 

  68. Safe, S.H. 1994, Polychlorinated biphenyls (PCBs): environmental impact, biochemical and toxic responses, and implications for risk assessment. Crit. Rev. Toxicol. 24: 87–149.

    Google Scholar 

  69. Van Den Berg, M., J. De Jongh, H. Poiger and J.R. Olson. 1994. The toxicokinetics and metabolism of polychlorinated dibenzo-p-dioxins (PCDDs) and dibenzofurans (PCDFs), and their relevance for toxicity. Crit. Rev. Toxicol. 24: 1–74.

    Google Scholar 

  70. Matsumura, F. 1985. Toxicology of Insecticides. Plenum Press, New York, NY.

    Google Scholar 

  71. Safe, S.H. 1990. Polychlorinated biphenyls (PCBs), dibenzo-p-dioxins (PCDDs),dibenzofurans (PCDFs), and related compounds: Environmental and mechanistic considerations which support the development of toxic equivalency factors (TEFs). Crit. Rev. Toxicol. 21: 51–88.

    Google Scholar 

  72. Safe, S.H., ed., 1987. Polychlorinated biphenyls (PCBs): Mammalian and Environmental Toxicology. Springer-Verlag, Heidelberg, Germany.

    Book  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Van Den Berg, M., Van De Meent, D., Peijnenburg, W.J.G.M., Sijm, D.T.H.M., Struijs, J., Tas, J.W. (1995). Transport, Accumulation and Transformation Processes. In: van Leeuwen, C.J., Hermens, J.L.M. (eds) Risk Assessment of Chemicals. Springer, Dordrecht. https://doi.org/10.1007/978-94-015-8520-0_3

Download citation

  • DOI: https://doi.org/10.1007/978-94-015-8520-0_3

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-015-8522-4

  • Online ISBN: 978-94-015-8520-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics