Skip to main content

The Effects of Weathering and Natural Heating on Trace Elements of Coal

  • Chapter
Environmental Aspects of Trace Elements in Coal

Part of the book series: Energy & Environment ((ENEN,volume 2))

Abstract

Geochemistry of coal seams is variably affected by weathering and natural heating. Weathering of coal implies natural oxidation taking place at low temperature (< 30°C) for several years. In contrast, natural heating is a high temperature event and occurs due to implacement of plutonic or invasion of volcanic rocks into coal seams often for short durations or self-burning of coal seams due to forest fire or lightning.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Banerjee, S.C. (1985) Mechanisms of spontaneous combustion of coal, in A.A. Baalkema (ed.), Spontaneous Combustion of Coal and Mine Fires, Rotterdam, pp. 5–32.

    Google Scholar 

  • Beaton, A. (1990) The organic petrology and geochemistry of lignites from Palaeocene Ravenscrag Formation, Southern Saskatchewan, Canada, Unpublished M.Sc. Thesis 1990, University of Regina, 130 pp.

    Google Scholar 

  • Brown, H.R. and Taylor, G.H. (1961) Remarkable Antarctic coals, Fuel 40, 211–224.

    CAS  Google Scholar 

  • Bustin, R.M. and Mathews, W.H. (1986) In situ gasification of coal, a natural example: additional data on the Aldridge Creek coal fire, southeastern British Columbia, Can. J. Earth Sci. 22, 1858–1864.

    Article  Google Scholar 

  • Cecil, C. B. , Stanton, R.W., Dulong, F.T. and Renton, J. J. (1982) Geologic factors that control mineral matter in coal, in R.H. Filby, B.S. Carpenter and R.C. Ragaini (eds.), Atomic and Nuclear Methods in Fossil Energy Research, Plenum, New York, pp. 323–325.

    Chapter  Google Scholar 

  • Chamberlain, E.A.C. and Hall, D.A. (1973) The liability of coals to spontaneous combustion, Colliery Guard. 221(2), 65–72.

    Google Scholar 

  • Cleyle, P. J., Caley, W. P., Stewart, I. and Whiteway, S.G. (1984) Decomposition of pyrite and trapping of sulphur in a coal matrix during pyrolysis of coal, Fuel 63, 1579–1582.

    Article  CAS  Google Scholar 

  • Crelling, J.C. and Dutcher, R.R. (1968) A petrologic study of thermally altered coal from the Purgatoire River valley of Colorado, Geol. Soc. Am., Bull. 79, 1375–1386.

    Article  Google Scholar 

  • Dutcher, R.R., Campbell, D.L. and Thornton, C.P. (1966) Coal metamorphism and igneous intrusions in Colorado, in R.F. Gould (ed.), Coal Science, Adv. Chem., Ser. 55, Washington, D.C., Am. Chem. Soc. pp. 708–723.

    Google Scholar 

  • Finkelman, R.B. (1978) Release of trace elements from a burning bituminous culm bank, US Geol. Surv. Open-File Rep. 78–864, 37 pp.

    Google Scholar 

  • Finkelman, R.B., Bostick, N.H. and Dulong, F.T. (1992) Influence of igneous intrusion on the element distribution of a bituminous coal from Pikin County Colorado, 9th Annu. Meet. Soc. Org. Petrol., University Park, Pennsylvania, 112–114.

    Google Scholar 

  • Fryer, H. (1981) Ghost Towns of Alberta, Stage Coach Publishing Co., Langley, British Columbia, 140 pp.

    Google Scholar 

  • Ghosh, T.K. (1967) A study of temperature conditions at igneous contacts with certain Permian coals of India, Econ. Geol. 62, 109–117.

    Article  CAS  Google Scholar 

  • Gluskoter, H.J. (1967) Chlorine in coals of the Illinois Basin, Trans. Soc. Min. Eng. 238, 373.

    Google Scholar 

  • Gluskoter, H.J., Ruch, R.R., Miller, W.G., Cahill, R.A. Dreher, G.B. and Kuhn, J.K. (1977) Trace elements in coal, occurrence and distribution, Ill. State Geol. Surv., Circ. 499, 154 pp.

    Google Scholar 

  • Goodarzi, F. (1985) Optically anisotropic fragments in a western Canadian subbituminous coal, Fuel 64, 1294–1300.

    Article  Google Scholar 

  • Goodarzi, F. (1986) Anisotropic fragments in strongly folded and faulted coals from the Rocky Mountain area of southeast British Columbia, Can. J. Earth Sci. 23(2), 254–258.

    Article  Google Scholar 

  • Goodarzi, F. (1987a) Comparison of elemental distribution in fresh and weathered samples of selected coals in Jurassic–Cretaceous Kootenay Group, British Columbia, Chem. Geol. 63, 21–28.

    Article  CAS  Google Scholar 

  • Goodarzi, F. (1987b) Reflectance and petrology of a burning bituminous coal seam, Fuel 66, 1073–1078.

    Article  CAS  Google Scholar 

  • Goodarzi, F. (1988) Elemental distribution in coal seams at the Fording coal mine, British Columbia, Canada, Chem. Geol. 68, 129–154.

    Article  CAS  Google Scholar 

  • Goodarzi F. (1990) Variation of elements in self–burning coal seams from Coalspur, Alberta, Canada, Energy Sources 12, 345–361.

    Article  CAS  Google Scholar 

  • Goodarzi, F. and Cameron, A.R. (1990) Organic petrology and elemental distribution in thermally altered coals from Telkwa, British Columbia, Energy Sources 12, 315–343.

    Article  CAS  Google Scholar 

  • Goodarzi, F. and Gentzis, T. (1990) The lateral and vertical reflectance and petrological variation of a heat–affected bituminous coal seam from southeastern British Columbia, Canada, Int. J. Coal Geol. 15(4), 317–339.

    Article  CAS  Google Scholar 

  • Goodarzi, F. and Gentzis, T. (1991) Geological controls of the self-burning of coals seam. In: D.C. Peters (ed.), Geology in Coal Resource Utilization, TechBooks, Fairfax, Virginia, pp. 559–575.

    Google Scholar 

  • Goodarzi, F. and Gentzis, T. (1993) Mobilization of elements in heat-affected coal seams, Proc. 7th Int. Conf. Coal Sci. Banff, Canada, 1, 569–573.

    CAS  Google Scholar 

  • Goodarzi, F. and Murchison, D.G. (1978) Influence of heating rate variation of the anisotropy of carbonized vitrinites, Fuel 57, 273–284.

    Article  CAS  Google Scholar 

  • Goodarzi, F. and Swaine, D.J. (1993) Behavior of boron in coal during natural and industrial combustion processes, Energy Sources 15, 609–622.

    Article  CAS  Google Scholar 

  • Goodarzi, F. and Swaine, D.J. (1994) Paleoenvironmental and environmental aspects of boron in coal, Geol. Surv. Can. Bull. 471, 76 pp.

    Google Scholar 

  • Goodarzi, F. and Van der Flier-Keller, E. (1988) Distribution of major, minor and trace elements in Hat Creek coal deposit No.2, British Columbia, Canada, Chem. Geol., 70, 313–333.

    Article  CAS  Google Scholar 

  • Goodarzi, F., Gentzis, T. and Bustin, R.M. (1988) Reflectance and petrology profile of a partially combusted and coked bituminous coal seam from British Columbia, Fuel 67, 1218–1222.

    Article  CAS  Google Scholar 

  • Humphreys, D., Rawlands, D. and Cudmore, J.F. (1981) Spontaneous combustion of some Queensland coals, in A.J. Hargrave (ed.) Ignitions, Explosions and Fires in Coal Mines Symposium, Wollongong, Australia, May, Australasian Inst. of Min. Metall., Illawarra, pp. 5–5 to 5–15.

    Google Scholar 

  • Jones, J.M. and Creaney, S. (1977) Optical character of thermally metamorphosed coals of northern England, J. Microsc. 109, 105–118.

    Article  CAS  Google Scholar 

  • Kisch, H.J. and Taylor, G.H. (1966) Metamorphism and alteration near an intrusive contact, Econ. Geol. 61, 343–361.

    Article  CAS  Google Scholar 

  • Lim, M.Y. (1979) Trace elements from coal combustion-atmospheric emissions, Rep. ICTIS/TR05, London, IEA Coal Research, 58 pp.

    Google Scholar 

  • Miard, H. (1945) Upper Elk Valley Coalfield, B.C. Minis. Min. Annu. Rep. 145, 175 pp.

    Google Scholar 

  • Moxon, N.T. and Richardson, S.B. (1985a) Assessment and chemical inhibition of self heating in coal, Proc. Int. Conf. Coal Sci., Sydney, Australia, 487–490.

    Google Scholar 

  • Moxon, N.T. and Richardson, S.B. (1985b) Development of self heating index for coal, Coal Prep. 2, 91–105.

    Article  CAS  Google Scholar 

  • Nicholls, G.D. (1968) The geochemistry of coal-bearing strata, in D.G. Murchison and T.S. Westoll (eds.), Coal and Coal-bearing Strata, Oliver and Boyd, Edinburgh, 269–307.

    Google Scholar 

  • Pearson, D.E. and Creaney, S. (1980) Spontaneous carbonization of oxidized high-volatile coal by a lightning strike, Can. J. Earth Sci. 17, 36–42.

    Article  Google Scholar 

  • Pearson, D.E. and Kwong, H. (1979) Mineral matter as a measure of oxidation of a coking coal, Fuel 58, 63–66.

    Article  CAS  Google Scholar 

  • Stewart, I., Whiteway, S.G., Cleyle, P.J. and Caley, W.F. (1986) Decomposition of pyrite in coal matrix during the pyrolysis of coal, in M.J. Comstock (ed.), Mineral Matter and Ash in Coal, pp. 485–499.

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Goodarzi, F. (1995). The Effects of Weathering and Natural Heating on Trace Elements of Coal. In: Swaine, D.J., Goodarzi, F. (eds) Environmental Aspects of Trace Elements in Coal. Energy & Environment, vol 2. Springer, Dordrecht. https://doi.org/10.1007/978-94-015-8496-8_5

Download citation

  • DOI: https://doi.org/10.1007/978-94-015-8496-8_5

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-4606-2

  • Online ISBN: 978-94-015-8496-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics