Skip to main content

Frege’s Principle

  • Chapter
From Dedekind to Gödel

Part of the book series: Synthese Library ((SYLI,volume 251))

Abstract

In his Grundgesetze der Arithmetik,1 Frege does indeed prove the “simplest laws of Numbers”, the axioms of arithmetic being among these laws. However, as is well known, Frege does not do so “by logical means alone”, since his proofs appeal to an axiom which is not only not a logical truth but a logical falsehood. The axiom in question is Frege’s Axiom V, which governs terms of the form “

$$\mathop \varepsilon \limits^, $$

.Φ(ε)”, terms which purport to refer to what Frege calls ‘value-ranges’. For present purposes, Axiom V may be written:2

$$\mathop \varepsilon \limits^, .F\varepsilon = \mathop \varepsilon \limits^, .G\varepsilon \equiv \forall \left( {Fx \equiv Gx} \right).$$

The formal theory of Grundgesetze, like any (full)3 second-order theory containing this sentence, is thus inconsistent, since Russell’s Paradox is derivable from Axiom V in (full) second-order logic.

In my Grundlagen der Arithmetik, I sought to make it plausible that arithmetic is a branch of logic and need not borrow any ground of proof whatever from either experience or intuition. In the present book this shall now be confirmed, by the derivation of the simplest laws of Numbers by logical means alone (Gg I §0).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  • Boolos, George: 1987, ‘The Consistency of Frege’s Foundations of Arithmetic’, in J. Thomson (ed.), On Being and Saying: Essays for Richard Cartwright, MIT Press, Cambridge, MA, pp. 1–20.

    Google Scholar 

  • Boolos, George and Richard G. Heck, ‘Die Grundlagen der Arithmetik §§82–83”, forthcoming in M. Schirn (ed.), Philosophy of Mathematics Today.

    Google Scholar 

  • Dummett, Michael: 1992, Frege: Philosophy of Mathematics, Harvard University Press, Cambridge, MA.

    Google Scholar 

  • Dummett, Michael: 1991, ‘Frege on the Consistency of Mathematical Theories’, in Frege and Other Philosophers, Clarendon Press, Oxford, pp. 1–16.

    Google Scholar 

  • Frege, Gottlob: 1988, Begriffsschrift, eine der arithmetischen Nachgebildete Formelsprache des reinen Denkens, in I. Angelelli (ed.), Begriffsschrift und andere Aufsätze, Georg Olms Verlag, Hildesheim.

    Google Scholar 

  • Frege, Gottlob: 1980, The Foundations of Arithmetic, tr. by J. L. Austin, Northwestern University Press, Evanston, IL.

    Google Scholar 

  • Frege, Gottlob: 1966, Grundgesetze der Arithmetik, Georg Olms Verlag, Hildesheim. Frege, Gottlob: 1964, The Basic Laws of Arithmetic, tr. by M. Furth, University of California Press, Berkeley.

    Google Scholar 

  • Frege, Gottlob: 1984, Collected Papers,ed. by Brian McGuinness, Blackwell, Oxford. Frege, Gottlob, ‘On the Foundations of Geometry: First Series’, Collected Papers,pp. 273–284.

    Google Scholar 

  • Frege, Gottlob, ‘On the Foundations of Geometry: Second Series’, Collected Papers,pp. 293–340.

    Google Scholar 

  • Frege, Gottlob: 1980, Philosophical and Mathematical Correspondence,ed. by G. Gabriel et al.,tr. by H. Kaal, University of Chicago Press, Chicago.

    Google Scholar 

  • Heck, Richard G.: 1993, ‘The Development of Arithmetic in Frege’s Grundgesetze der Arithmetik’, Journal of Symbolic Logic 58, 579–601; reprinted, revised and with a postscript, in W. Demopolous (ed.), Frege’s Philosophy of Mathematics, Harvard University Press, Cambridge, MA, pp. 257–294.

    Google Scholar 

  • Heck, Richard G.: 1995, ‘Definition by Induction in Frege’s Grundgesetze der Arithmetik’, in W. Demopolous (ed.), Frege’s Philosophy of Mathematics, Harvard University Press, Cambridge, MA, pp. 295–333.

    Google Scholar 

  • Parsons, Charles: 1983, ‘Frege’s Theory of Number’, in C. Parsons (ed.), Mathematics in Philosophy, Cornell University Press, Ithaca, NY, pp. 150–175.

    Google Scholar 

  • Parsons, Terence: 1987, ‘On the Consistency of the First-Order Portion of Frege’s Logical System’, Notre Dame Journal of Formal Logic 28, 161–168.

    Article  Google Scholar 

  • Schroeder-Heister, Peter: 1987, ‘A Model-theoretic Reconstruction of Frege’s Permutation Argument’, Notre Dame Journal of Formal Logic 28, 69–79.

    Article  Google Scholar 

  • Wright, Crispin: 1983, Frege’s Conception of Numbers as Objects, Aberdeen University Press, Aberdeen.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Heck, R.G. (1995). Frege’s Principle. In: Hintikka, J. (eds) From Dedekind to Gödel. Synthese Library, vol 251. Springer, Dordrecht. https://doi.org/10.1007/978-94-015-8478-4_6

Download citation

  • DOI: https://doi.org/10.1007/978-94-015-8478-4_6

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-4554-6

  • Online ISBN: 978-94-015-8478-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics