Advertisement

Wittgenstein and Ramsey on Identity

  • Mathieu Marion
Chapter
Part of the Synthese Library book series (SYLI, volume 251)

Abstract

Jaakko Hintikka has recently proposed that the distinction between the standard and nonstandard interpretations of higher-order quantifiers be used as a new tool for investigations in the history of the foundations of mathematics.1 This distinction can be described succinctly as follows: let us take a second-order quantifier involving a one-place class variable X, whose values are classes of individuals of a domain do(M). Those adopting the standard interpretation would claim that the range of this quantifier is the entire power set P(do(M)), i.e. some values of X are arbitrary extensionally possible classes, while those adopting the nonstandard interpretation would consider only some such classes as constituting the range of the quantifier. (The same reasoning applies if X is a predicate variable or for function variables.)

Keywords

Standard Interpretation Vienna Circle Propositional Function Predicative Function Existence Proposition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. Andrews, P. B.: 1965, A Transfinite Type Theory with Type Variables, North-Holland, Amsterdam.Google Scholar
  2. Demopoulos, W. and J. L. Bell: 1993, `Frege’s Theory of Concepts and Objects and the Interpretation of Second-Order Logic’, Philosophia Mathematica 1, 139–156.CrossRefGoogle Scholar
  3. Dirichlet, P. G. L.: 1837. L.: 1837, `Ober die Darstellung ganz willkürlicher Funktionen durch Sinus-und Cosinusreihen’, in L. Kronecker (ed.), Werke, reprint, Chelsea, New York, 1969, vol. 1, pp. 135–160.Google Scholar
  4. Fogelin, R.: 1983, `Wittgenstein on Identity’, Synthese 56, 141–154.CrossRefGoogle Scholar
  5. Gödel, K.: 1931, `On Formally Undecidable Propositions of Principia Mathematica and Related Systems I’, in van Heijenoort (1967), pp. 596–616.Google Scholar
  6. Gödel, K.: 1940, The Consistency of the Continuum Hypothesis, Princeton University Press, Princeton.Google Scholar
  7. Gödel, K.: 1944, `Russell’s Mathematical Logic’, in P. Benacerraf and H. Putnam (eds.), Philosophy of Mathematics. Selected Readings, second edition (1983), Cambridge University Press, Cambridge, pp. 447–469.Google Scholar
  8. Gödel, K.: 1980, `On a Hitherto Unexploited Extension of the Finitary Standpoint’, Journal of Philosophical Logic 9, 133–142.CrossRefGoogle Scholar
  9. Hahn, H.: 1980, `Discussion about the Foundations of Mathematics’, in B. McGuinness (ed.), Empiricism, Logic, and Mathematics. Philosophical Papers, D. Reidel, Dordrecht and Boston.Google Scholar
  10. Heck, R. G. and J. Stanley: 1993, `Reply to Hintikka and Sandu: Frege and Second-Order Logic’, Journal of Philosophy 90, 416–424.CrossRefGoogle Scholar
  11. Henkin, L.: 1950, `Completeness in the Theory of Types’, Journal of Symbolic Logic 15, 81–91.CrossRefGoogle Scholar
  12. Hilbert, D.: 1925, `On the Infinite’, in van Heijenoort (1967), pp. 367–392.Google Scholar
  13. Hintikka, J.: 1956, `Identity, Variables and Impredicative Definitions’, Journal of Symbolic Logic 21, 225–245.CrossRefGoogle Scholar
  14. Hintikka, J. and G. Sandu: 1992, `The Skeleton in Frege’s Cupboard: The Standard versus Nonstandard Distinction’, Journal of Philosophy 89, 290–315.CrossRefGoogle Scholar
  15. Hintikka, J.: 1993, `Ludwig’s Apple Tree: On the Philosophical Relations between Wittgenstein and the Vienna Circle’, in F. Stadler (ed.), Scientific Philosophy: Origins and Developments, Kluwer, Dordrecht, pp. 27–46.Google Scholar
  16. Hintikka, J.: 1995, `Standard vs. Nonstandard Distinction: A Watershed in the Foundations of Mathematics’, this volume.Google Scholar
  17. Johnson, W. E.: 1922, Logic. Part II. Demonstrative Inference: Deductive and Inductive, Cambridge University Press, Cambridge.Google Scholar
  18. Jourdain, P. E. B.: 1905, `On the General Theory of Functions’, Journal far reine und Angewandte Mathematik 128, 169–210.Google Scholar
  19. L’Abbé, M.: 1953, `Systems of Transfinite Types Involving X-Conversion’, Journal of Symbolic Logic 18, 209–224.CrossRefGoogle Scholar
  20. Leblanc, H.: 1975, `That Principia Mathematica, First Edition, Has a Predicative Interpretation After All’, Journal of Philosophical Logic 4, 67–70.Google Scholar
  21. Lewy, C.: 1967, `A Note on the Text of the Tractatus’, Mind 76, 416–423.CrossRefGoogle Scholar
  22. Majer, U.: 1989, ‘Ramsey’s Conception of Theories: An Intuitionistic Approach’, History of Philosophy Quarterly 6, 233–258.Google Scholar
  23. Majer, U.: 1991, ‘Ramsey’s Theory of Truth and the Truth of Theories: A Synthesis of Pragmatism and Intuitionism in Ramsey’s Last philosophy’, Theoria 57, 162–195.CrossRefGoogle Scholar
  24. Marion, M.: 1995, `Wittgenstein and Finitism’, to appear in Synthese.Google Scholar
  25. Molk, J.: 1990, `Principes fondamentaux de la théorie des fonctions’, in J. Molk (ed.), Encyclopédie des sciences mathématiques pures et appliquées vol. II. 1, Gauthier-Villars, Paris, pp. 1–112.Google Scholar
  26. Myhill, J.: 1974, `The Undefinability of the Set of Natural Numbers in the Ramified Principia’, in G. Nakhnikian (ed.), Bertrand Russell’s Philosophy, Duckworth, London, pp. 19–27.Google Scholar
  27. Nedo, M. and M. Ranchetti: 1983, Ludwig Wittgenstein. Sein Leben in Bildern und Texten, Suhrkampf, Frankfurt.Google Scholar
  28. Poincaré, H.: 1909, `La logique de l’infini’, Revue de métaphysique et de morale 17, 461–482.Google Scholar
  29. Pringsheim, A.: 1899, `Grundlagen der allgemeinen Funktionenlehre’, in H. Burkhardt and W. F. Meyers (eds.), Encyklopädie der mathemtischen Wissenschaften mit Einschluss ihrer Anwendungen vol. IIai, Teubner, Leipzig, pp. 1–41.Google Scholar
  30. Ramsey, F.: 1925, `The Foundations of Mathematics’, in Ramsey ( 1978 ), pp. 152–212.Google Scholar
  31. Ramsey, F.: 1926, `Mathematical Logic’, in Ramsey ( 1978 ), pp. 213–232.Google Scholar
  32. Ramsey, F.: 1978, Foundations, D. H. Mellor (ed. ), Routledge and Kegan Paul, London.Google Scholar
  33. Ramsey, F.: 1990, Notes on Philosophy, Probability and Mathematics, M. C. Galavotti (ed.), Bibliopolis, Naples.Google Scholar
  34. Ramsey, F.: 1991, On Truth, N. Rescher and U. Majer (eds.), Kluwer, Dordrecht, Boston and London.Google Scholar
  35. Russell, B.: 1910, `La théorie des types logiques’, Revue de métaphysique et de morale 18, 263–301.Google Scholar
  36. Tarski, A.: 1965, Introduction to Logic and the Methodology of Deductive Sciences, Oxford University Press, Oxford.Google Scholar
  37. Tarski, A.: 1983, Logic, Semantics, Metamathematics, second edition, Hackett, Indianapolis.Google Scholar
  38. Heijenoort, J. (ed.): 1967, From Frege to Gödel. A Sourcebook in Mathematical Logic, 1879–1931, Harvard University Press, Cambridge Mass.Google Scholar
  39. Wright, G. H.: 1993, `The Wittgenstein Papers’, in L. Wittgenstein: Philosophical Occasions, 1912–1951, J. Klagge and A. Nordmann (eds.), Hackett Pub. Co., Indianapolis and Cambridge, pp. 480–506.Google Scholar
  40. Waismann, F.: 1977, `The Concept of Identity’, in B. McGuinness (ed.), Philosophical Papers, D. Reidel, Dordrecht, pp. 22–29.Google Scholar
  41. White, R.: 1979, `Wittgenstein on Identity’, Proceedings of the Aristotelian Society, N. S. 78, 157–174.Google Scholar
  42. Whitehead, A. N. and B. Russell: 1925–27, Principia Mathematica, Cambridge University Press, Cambridge, second edition: volume I, 1925; volume II, 1926; volume III, 1927.Google Scholar
  43. Wittgenstein, L.: 1922, Tractatus Logico-Philosophicus, Routledge and Kegan Paul, London. Wittgenstein, L.: 1965, Philosophical Remarks, Blackwell, Oxford.Google Scholar
  44. Wittgenstein, L.: 1973, Letters to C. K. Ogden, Blackwell/Routledge and Kegan Paul, Oxford/London.Google Scholar
  45. Wittgenstein, L.: 1974, Philosophical Grammar, Blackwell, Oxford.Google Scholar
  46. Wittgenstein, L.: 1978, Remarks on the Foundations of Mathematics, revised third edition, Blackwell, O xford.Google Scholar
  47. Wittgenstein, L.: 1979a, Notebooks 1914–1916, revised second edition, Blackwell, Oxford.Google Scholar
  48. Wittgenstein, L.: 1979b, Ludwig Wittgenstein and the Vienna Circle, Blackwell, Oxford.Google Scholar
  49. Wittgenstein, L.: 1979c, Wittgenstein’s Lectures, Cambridge 1932–1935, Blackwell, Oxford.Google Scholar
  50. Wittgenstein, L.: 1980, Culture and Value, Blackwell, Oxford.Google Scholar
  51. Wright, C.: 1985, `Skolem and the Skeptic’, Proceedings of the Aristotelian Society 59 (Supp.), 117–137.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1995

Authors and Affiliations

  • Mathieu Marion
    • 1
  1. 1.University of OttawaCanada

Personalised recommendations