The Emergence of Descriptive Set Theory

  • Akihiro Kanamori
Part of the Synthese Library book series (SYLI, volume 251)


Descriptive set theory is the definability theory of the continuum, the study of the structural properties of definable sets of reals. Motivated initially by constructivist concerns, a major incentive for the subject was to investigate the extent of the regularity properties, those properties indicative of well-behaved sets of reals. With origins in the work of the French analysts Borel, Baire, and Lebesgue at the turn of the century, the subject developed progressively from Suslin’s work on the analytic sets in 1916, until Gödel around 1937 established a delimitative result by showing that if V = L, there are simply defined sets of reals that do not possess the regularity properties. In the ensuing years Kleene developed what turned out to be an effective version of the theory as a generalization of his foundational work in recursion theory, and considerably refined the earlier results.


Regularity Property Measurable Cardinal Inaccessible Cardinal Baire Class Baire Property 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Addison, John W.: 1959, ‘Some Consequences of the Axiom of Constructibility’, Fundament Mathematicae 46, 337–357.Google Scholar
  2. Aleksandrov, Pavel S.: 1916, ‘Sur la puissance des ensembles mesurbles B’, Comptes Rendus de l’Académie des Sciences, Paris 162, 323–325.Google Scholar
  3. Aleksandrov, Pavel S.: 1972, ‘Pages from an Autobiography’, Russian Mathematical Surveys 34 (6), 267–302.CrossRefGoogle Scholar
  4. Baire, René: 1898, ‘Sur les fonctions discontinues qui se rattachment aux fonctions continues’, Comptes Rendus de l’Académie des Sciences, Paris 129, 1621–1623.Google Scholar
  5. Baire, René: 1899, ‘Sur les fonctions de variables réelles’, Annali di Matematica Pura ed Applicata 3 (3), 1–122.CrossRefGoogle Scholar
  6. Baire, René: 1906, ‘Sur la représentation des fonctions discontinues. Première partie’, Acta Mathematica 30, 1–48.CrossRefGoogle Scholar
  7. Baire, René: 1909, ‘Sur la représentation des fonctions discontinues. Deuxième partie’, Acta Mathematica 32, 97–176.CrossRefGoogle Scholar
  8. Bendixson, Ivar: 1883, ‘Quelques théorèmes de la théorie des ensembles de points’, Acta Mathematica 2, 415–429.CrossRefGoogle Scholar
  9. Borel, Emile: 1898, Leçons sur la théorie des fonctions, Gauthier-Villars, Paris.Google Scholar
  10. Borel, Emile: 1905, Leçons sur les fonctions de variables réelles et les développements en series de polynomes, Gauthier-Villars, Paris.Google Scholar
  11. Brouwer, Luitzen E. J.: 1906, Over de Grondslagen der Wiskunde, Maas van Suchtelen, Amsterdam. Translated in [1975] below, pp. 11–101.Google Scholar
  12. Brouwer, Luitzen E. J.: 1975, Collected Works, vol. 1, edited by Arend Heyting, North-Holland, Amsterdam.Google Scholar
  13. Cantor, Georg: 1883, ‘über unendliche, lineare Punktmannichfaltigkeiten. V’, Mathematicshe Annalen 21, 545–591. Reprinted in [1966] below, pp. 165–209.Google Scholar
  14. Cantor, Georg: 1884, ‘Ube unendliche, linear Punktmannichfaltigkeiten. VI’, Mathematicshe Annalen 23, 453–488. Reprinted in [1966] below, pp. 210–246.Google Scholar
  15. Cantor, Georg: 1966, Gesammelte Abehandlungen, edited by Ernst Zermelo. Hildesheim, Georg Olms Verlag. Reprint of the original 1932 edition, Springer, Berlin.Google Scholar
  16. Feferman, Solomon and Azriel Levy: 1963, ‘Independence Results in Set Theory by Cohen’s Method. II (abstract)’, Notices of the American Mathematical Society 10, 593.Google Scholar
  17. Gödel, Kurt F.: 1930, ‘Die Vollständigkeit der Axiome des logischen Funktionenkalküls’, Monatshefte für Mathematik und Physik 37, 349–360. Reprinted and translated in [1986] below, pp. 102–123.Google Scholar
  18. Gödel, Kurt F.: 1931, ‘über formal unentscheidbare Sätze der Principia Mathematica und verwandter Systeme I’, Monatshefte für Mathematik und Physik 38, 173–198. Reprinted and translated in [1986] below, pp. 145–195.Google Scholar
  19. Gödel, Kurt F.: 1938, ‘The Consistency of the Axiom of Choice and of the Generalized Continuum-Hypothesis’, Proceedings of the National Academy of Sciences U.S.A. 24, 556–557. Reprinted in [1990] below, pp. 26–27.Google Scholar
  20. Gödel, Kurt F.: 1951, The Consistency of the Axiom of Choice and of the Generalized Continuum Hypothesis with the Axioms of Set Theory,Annals of Mathematics Studies #3, Princeton University Press, Princeton. Second printing. Reprinted in [1990] below, pp. 33–101.Google Scholar
  21. Gödel, Kurt F.: 1986, Collected Works, vol. 1, edited by Solomon Feferman et al., Oxford University Press, New York.Google Scholar
  22. Gödel, Kurt F.: 1990, Collected Works,vol. 2, edited by Solomon Feferman et al.,Oxford University Press, New York.Google Scholar
  23. Hausdorff, Felix: 1908, ‘Grundzüge einer Theorie der geordneten Mengen’, Mathematische Annalen 65, 435–505.CrossRefGoogle Scholar
  24. Hausdorff, Felix: 1914, Grundzüge der Mengenlehre, de Gruyter, Leipzig. Reprinted in Chelsea, New York (1965).Google Scholar
  25. Hausdorff, Felix: 1916, Die Mächtigkeit der Borelschen Mengen’, Mathematische Annalen 77, 430–437.CrossRefGoogle Scholar
  26. Hawkins, Thomas W.: 1975, Lebesgue’s Theory of Integration. Its Origins and Development, Second edition, Chelsea, New York.Google Scholar
  27. Kanovei, V. G.: 1985, ‘The Development of the Descriptive Theory of Sets under the Influence of the Work of Luzin’, Russian Mathematical Surveys 40 (3), 135–180.CrossRefGoogle Scholar
  28. Keisler, H. Jerome: 1962, ‘Some Applications of the Theory of Models to Set Theory’, in Ernest Nagel, Patrick Suppes and Alfred Tarski (eds.), Logic, Methodology and Philosophy of Science. Proceedings of the International Congress, Stanford, Stanford University Press, Stanford.Google Scholar
  29. Keldysh, Ljudmila V.: 1974, ‘The Ideas of N. N. Luzin in Descriptive Set Theory’, Russian Mathematical Surveys 29 (5), 179–193.CrossRefGoogle Scholar
  30. Kleene, Stephen C.: 1943, ‘Recursive Predicates and Quantifiers’, Transactions of the American Mathematical Society 53, 41–73.CrossRefGoogle Scholar
  31. Kleene, Stephen C.: 1955, ‘On the Forms of Predicates in the Theory of Constructive Ordinals (second paper)’, American Journal of Mathematics 77, 405–428.CrossRefGoogle Scholar
  32. Kleene, Stephen C.: 1955a, ‘Arithmetical Predicates and Function Quantifiers’, Transactions of the American Mathematical Society 79, 312–340.CrossRefGoogle Scholar
  33. Kleene, Stephen C.: 1955b, ‘Hierarchies of Number-Theoretic Predicates’, Bulletin of the American Mathematical Society 61, 193–213.CrossRefGoogle Scholar
  34. Kondô, Motokiti: 1937, ‘L’uniformisation des complémentaires analytiques’, Proceedings of the Imperial Academy of Japan 13, 287–291.CrossRefGoogle Scholar
  35. Kondô, Motokiti: 1939, ‘Sur l’uniformisation des complémentaires analytiques et les ensembles projectifs de la seconde classe’, Japanese Journal of Mathematics 15, 197–230.Google Scholar
  36. Kreisel, Georg: 1980, ‘Kurt Gödel, 28 April 1906–14 January 1978’, Biographical Memoirs of the Fellows of the Royal Society 26, 149–224. Corrections 27 (1981), 697, and 28 (1982), 718.Google Scholar
  37. Kuratowski, Kazimierz: 1922, ‘Une méthode d’elimination des nombres transfinis des raisonnements mathématiques’, Fundamenta Mathematicae 3, 76–108.Google Scholar
  38. Kuratowski, Kazimierz: 1931, ‘Evaluation de la classe Borélienne ou projective d’un ensemble de points à l’aide des symboles logiques’, Fundamenta Mathematicae 17, 249–272.Google Scholar
  39. Kuratowski, Kazimierz: 1966, Topology, vol. 1, Academic Press, New York.Google Scholar
  40. Kuratowski, Kazimierz: 1980, A Half Century of Polish Mathematics. Remembrances and Reflections, Pergamon Press, Oxford.Google Scholar
  41. Kuratowski, Kazimierz and Alfred Tarski: 1931, ‘Les opérations logiques et les ensembles projectifs’, Fundamenta Mathematicae 17, 240–248. Reprinted in Steven R. Givant and Ralph N. McKenzie (eds.), Alred Tarski. Collected Papers. Birkhäuser 1986, Basel, vol. 1, 551–559.Google Scholar
  42. Kuzawa, Mary G.: 1968, Modern Mathematics. The Genesis of a School in Poland, College University Press, New Haven.Google Scholar
  43. Lavrent’ev, Mikhail A.: 1974, ‘Nikolai Nikolaevich Luzin’, Russian Mathematical Surveys 29 (5), 173–178.CrossRefGoogle Scholar
  44. Lebesgue, Henri: 1902, ‘Intégrale, longueur, aire’, Annali di Matematica Pura ed Applicata 7 (3), 231–359.CrossRefGoogle Scholar
  45. Lebesgue, Henri: 1905, ‘Sur les fonctions représentables analytiquement’, Journal de Mathématiques Pures et Appliquées 1(6), 139–216. Reprinted in (1972) below, vol. 3, pp. 103–180.Google Scholar
  46. Lebesgue, Henri: 1972, Oeuvres Scientifiques, Kundig, Geneva.Google Scholar
  47. Levy, Azriel: 1965, ‘Definability in Axiomatic Set Theory I’, in Yehoshua Bar-Hillel (ed.), Logic, Methodology and Philosophy of Science. Proceedings of the 1964 International Congress, Jerusalem, North-Holland, Amsterdam, pp. 127–151.Google Scholar
  48. Luzin, Nikolai N.: 1917, ‘Sur la classification de M. Baire’, Comptes Rendus de l’Académie des Sciences, Paris 164, 91–94.Google Scholar
  49. Luzin, Nikolai N.: 1925, ‘Sur un problème de M. Emile Borel et les ensembles projectifs de M. Henri Lebesgue; les ensembles analytiques’, Comptes Rendus de l’Académie des Sciences, Paris 180, 1318–1320.Google Scholar
  50. Luzin, Nikolai N.: 1925a, ‘Sur les ensembles projectifs de M. Henri Lebesgue’, Comptes Rendus de l’Académie des Sciences, Paris 180, 1572–1574.Google Scholar
  51. Luzin, Nikolai N.: 1925b, ‘Les Propriétés des ensembles projectifs’, Comptes Rendus de l’Académie des Sciences, Paris 180, 1817–1819.Google Scholar
  52. Luzin, Nikolai N.: 1925c, ‘Sur les ensembles non mesurables B et l’emploi de diagonale Cantor’, Comptes Rendus de l’Académie des Sciences, Paris 181, 95–96.Google Scholar
  53. Luzin, Nikolai N.: 1926, ‘Mémoires sur les ensembles analytiques et projectifs’, Matematicheskii Sbornik 33, 237–290.Google Scholar
  54. Luzin, Nikolai N.: 1927, ‘Sur les ensembles analytiques’, Fundamenta Mathematicae 10, 1–95.Google Scholar
  55. Luzin, Nikolai N.: 1930, Leçons sur Les Ensembles Analytiques et Leurs Applications, Gauthier-Villars, Paris. Reprinted with corrections in Chelsea, New York (1972).Google Scholar
  56. Luzin, Nikolai N.: 1930a, ‘Sur le problème de M. J. Hadamard d’uniformisation des ensembles’, Comptes Rendus de l’Académie des Sciences 190, 349–351.Google Scholar
  57. Luzin, Nikolai N. and Petr S. Novikov: 1935, ‘Choix éffectif d’un point dans un complémentaire analytique arbitraire, donné par un crible’, Fundamenta Mathematicae 25, 559–560.Google Scholar
  58. Luzin, Nikolai N. and Wactaw Sierphiski: 1918, ‘Sur quelques propriétés des ensembles (A)’, Bulletin de l’Académie des Sciences Cracovie, Classe des Sciences Mathématiques, Série A, 35–48.Google Scholar
  59. Luzin, Nikolai N. and Wactaw Sierpitiski: 1923, ‘Sur un ensemble non mesurable B’, Journal de Mathématiques Pures et Appliquées 2 (9), 53–72.Google Scholar
  60. Martin, Donald A. and John R. Steel: 1988, ‘Projective determinacy’, Proceedings of the National Academy of Sciences U.S.A. 85, 6582–6586.CrossRefGoogle Scholar
  61. Martin, Donald A. and John R. Steel: 1989, ‘A proof of Projective Determinacy’, Journal of the American Mathematical Society 2, 71–125.CrossRefGoogle Scholar
  62. Mirimanoff, Dmitry: 1917, ‘Les antinomies de Russell et de Burali-Forti et le problème fondamental de la théorie des ensembles’, L’Enseignment Mathematique 19, 37–52.Google Scholar
  63. Moore, Gregory H.: 1982, Zermelo’s Axiom of Choice. Its Origins, Development and Influence, Springer-Verlag, New York.Google Scholar
  64. Moschovakis, Yiannis N.: 1980, Descriptive Set Theory, North-Holland, Amsterdam.Google Scholar
  65. Mostowski, Andrzej M.: 1949, ‘An Undecidable Arithmetical Statement’, Fundamenta Mathematicae 36, 143–164. Reprinted in Kazimierz Kuratowski et al. (eds.), Foundational Studies. Selected Works, vol. 1 ( 1979 ), North-Holland, Amsterdam, pp. 531–552.Google Scholar
  66. Novikov, Petr S.: 1931, ‘Sur les fonctions implicites mesurables B’, Fundamenta Mathematicae 17, 8–25.Google Scholar
  67. Novikov, Petr S.: 1951, ‘On the Consistency of Some Propositions of the Descriptive Theory of Sets (in Russian)’, Trudy Matematiéeskogo Instituat imeni V.A. Steklova 38, 279–316. Translated in American Mathematical Society Translations 29, 51–89.Google Scholar
  68. Phillips, Esther R.: 1978, ‘Nicolai Nicolaevich Luzin and the Moscow School of the Theory of Functions’, Historia Mathematica 5, 275–305.CrossRefGoogle Scholar
  69. Poincaré, Henri: 1906, ‘Les mathématiques et la logique’, Revue de Métaphysique et de Morale 14, 17–34.Google Scholar
  70. Schoenflies, Arthur: 1905, ‘über wohlgeordnete Mengen’, Mathematische Annalen 60, 181–186.CrossRefGoogle Scholar
  71. Scott, Dana S.: 1961, ‘Measurable Cardinals and Constructible Sets’, Bulletin de l’Académie Polonaise des Sciences, Série des Sciences Mathématiques, Astronomiques et Physiques 9, 521–524.Google Scholar
  72. Sierpiriski, Waclaw: 1925, ‘Sur une classe d’ensembles’, Fundamenta Mathematicae 7, 237–243.Google Scholar
  73. Sierpiríski, Waclaw: 1930, ‘Sur l’uniformisation des ensembles mesurables (B)’, Fundamenta Mathematicae 16, 136–139.Google Scholar
  74. Sierpinski, Waclaw: 1950, Les ensembles projectifs et analytiques, Mémorial des Sciences Mathématiques #112, Gauthier-Villars, Paris.Google Scholar
  75. Skolem, Thoralf: 1923, ‘Einige Bemerkung zur axiomatischen Begründung der Mengenlehre’, in Matematikerkongressen i Helsingfors 4–7 Juli 1922, Dem femte skandinaviska matematikerkongressen, Redogörelse, Akademiska Bokhandeln, Helsinki, pp. 217–232. Reprinted in [1970] below, pp. 137–152. Translated in van Heijenoort [ 1967 ], pp. 290–301.Google Scholar
  76. Skolem, Thoralf: 1970., Fenstad, Jens E. (ed.) Selected Works in Logic, Universitetsforlaget, Oslo.Google Scholar
  77. Shelah, Sahron: 1984, ‘Can You Take Solovay’s Inaccessible Away?’, Israel Journal of Matematics 48, 1–47.CrossRefGoogle Scholar
  78. Solovay, Robert M.: 1965, ‘The Measure Problem (abstract)’, Notices of the American Mathematical Society 13, 217.Google Scholar
  79. Solovay, Robert M.: 1969, ‘The Cardinality of EZ Sets of Reals’, in Jack J. Bullof, Thomas C. Holyoke and S. W. Hahn (eds.), Foundations of Mathematics. Symposium papers commemorating the sixtieth birthday of Kurt Gödel, Springer-Verlag, Berlin, pp. 58–73.CrossRefGoogle Scholar
  80. Solovay, Robert M.: 1970, ‘A Model of Set Theory in which Every Set of Reals is Lebesgue Measurable’, Annals of Mathematics 92, 1–56.CrossRefGoogle Scholar
  81. Suslin, Mikhail Ya.: 1917, ‘Sur une définition des ensembles mesurables B sans nombres transfinis’, Comptes Rendus de l’Académie des Sciences, Paris 164, 88–91.Google Scholar
  82. Uspenskii, Vladimir A.: 1985, ‘Luzin’s Contribution to the Descriptive Theory of Sets and Functions: Concepts, Problems, Predictions’, Russian Mathematicai Surveys 40 (3), 97–134.CrossRefGoogle Scholar
  83. Uspenskii, Vladimir A. and Kanovei, V. G.: 1983, ‘Luzin’s Problem on Constituents and Their Fate’, Moscow University Mathematics Bulletin 38 (6), 86–102.Google Scholar
  84. van Heijenoort, Jean (ed.): 1967, From Frege to Gödel: A Source Book in Mathematical Logic, 1879–1931, Harvard University Press, Cambridge.Google Scholar
  85. von Neumann, John: 1925, ‘Eine Axiomatisierung der Mengenlehre’, Journal für die reine und angewandte Mathematik 154, 219–240. Reprinted in [1961] below, vol. 1, pp. 34–56. Translated in van Heijenoort [ 1967 ], pp. 393–413.Google Scholar
  86. von Neumann, John: 1949, ‘On Rings of Operators. Reduction Theory’, Annals of Mathematics 50, 401–485. Reprinted in [1961] below, vol. 3, pp. 400–484.Google Scholar
  87. von Neumann, John: 1961, Taub, Abraham H. (ed.), John von Neumann. Collected Works, Pergamon Press, New York.Google Scholar
  88. Woodin, W. Hugh: 1988, ‘Supercompact Cardinals, Sets of Reals, and Weakly Homogeneous Trees’, Proceedings of the National Academy of Sciences U.S.A. 85, 6587–6591.CrossRefGoogle Scholar
  89. Yankov, V.: 1941, ‘Sur l’uniformisation des ensembles A’, Doklady Akademiia Nauk SSSR 30, 597–598.Google Scholar
  90. Young, William H.: 1903, ‘Zur Lehre der nicht abgeschlossenen Punktmengen’, Berichte über die Verhandlungen der Königlich Sächsischen Gesellschaft der Wissenschaften zu Leipzig, Mathematisch-Physische Klasse 55, 287–293.Google Scholar
  91. Zermelo, Ernst: 1930, ‘über Grenzzahlen und Mengenbereiche: Neue undersuchungen über die Grundlagen der Mengenlehre’, Fundamenta Mathematicae 16, 29–47.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1995

Authors and Affiliations

  • Akihiro Kanamori
    • 1
  1. 1.Boston UniversityUSA

Personalised recommendations