Skip to main content

Set-Valued Interpolation, Differential Inclusions, and Sensitivity in Optimization

  • Chapter

Part of the book series: Mathematics and Its Applications ((MAIA,volume 331))

Abstract

Set-valued interpolation and integration methods are introduced with special emphasis on error representations and error estimates with respect to Hausdorff distance. The connection between order of convergence results and sensitivity properties of finite-dimensional convex optimization problems is discussed. The results are applied to the numerical approximation of reachable sets of linear control problems by quadrature formulae and interpolation techniques for set-valued mappings.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Artstein, Z.: On the calculus of closed set-valued functions, Indiana University Mathematics Journal 24(5)(1974), 433–441.

    Article  MathSciNet  MATH  Google Scholar 

  2. Aubin, J.-P., and Frankowska, H.: Set- Valued Analysis, Birkhäuser, Boston—Basel— Berlin, 1990.

    MATH  Google Scholar 

  3. Aumann, R. J.: Integrals of set-valued functions, J. Math. Anal. Appl. 12(1)(1965), 1–12.

    Article  MathSciNet  MATH  Google Scholar 

  4. Baier, R.: Extrapolation methods for the computation of set-valued integrals and reachable sets of linear differential inclusions, ZAMM 74(6)(1994), T555—T557.

    Google Scholar 

  5. Baier, R.: Mengenwertige Integration und die diskrete Approximation erreichbarer Mengen, Dissertation, Universität Bayreuth, 1994.

    Google Scholar 

  6. Baier, R., and Lempio, F.: Approximating reachable sets by extrapolation methods, in P. J. Laurent, A. Le Méhauteé, and L. L. Schumaker (eds.) Curves and Surfaces in Geometric Design, A K Peters, Wellesley, 1994, pp. 9–18.

    Google Scholar 

  7. Baier, R., and Lempio, F.: Computing Aumann’s integral, in A. B. Kurzhanski and V. M. Veliov (eds.) Modeling Techniques for Uncertain Systems, Birkhäuser, Basel, 1994, pp. 71–92.

    Google Scholar 

  8. Baier, R., Lempio, F., and Polovinkin, E.: Set-valued integration with negative weights, Preprint, 1995.

    Google Scholar 

  9. Balaban, E. I.: On the approximate evaluation of the Riemann integral of manyvalued mapping, U.S.S.R. Comput. Maths. Math. Phys. 22(2)(1982), 233–238.

    Article  MathSciNet  MATH  Google Scholar 

  10. Banks, H. T., and Jacobs, M. Q.: A differential calculus for multifunctions, J. Math. Anal. Appl. 29(2)(1970), 246–272.

    Article  MathSciNet  MATH  Google Scholar 

  11. Bonnesen, T., and Fenchel, W.: Theorie der konvexen Körper, Chelsea Publishing Company, Bronx-New York, 1934.

    Book  MATH  Google Scholar 

  12. Chartres, B. A., and Stepleman, R. S.: Actual order of convergence of Runge Kutta methods on differential equations with discontinuities, SIAM J. Numer. Anal. 11(6) (1974), 1193–1206.

    Article  MathSciNet  MATH  Google Scholar 

  13. Chartres, B. A., and Stepleman, R. S.: Convergence of linear multistep methods for differential equations with discontinuities, Numer. Math. 27(1976), 1–10.

    Article  MathSciNet  MATH  Google Scholar 

  14. Ciarlet, P. G.: The Finite Element Method for Elliptic Problems, North-Holland Publishing Comp., Amsterdam-New York-Oxford, 1978.

    MATH  Google Scholar 

  15. Ciarlet, P. G., and Wagschal, C.: Multipoint Taylor formulas and applications to the finite element method, Numer. Math. 17(1971), 84–100.

    Article  MathSciNet  MATH  Google Scholar 

  16. Doitchinov, B. D., and Veliov, V. M.: Parameterizations of integrals of set-valued mappings and applications, J. Math. Anal. Appl. 179(2)(1993), 483–499.

    Article  MathSciNet  MATH  Google Scholar 

  17. Dieudonné, J.: Foundations of Modern Analysis, Academic Press, New York-London, 1969.

    MATH  Google Scholar 

  18. Donchev, T. D., and Farkhi, E. M.: Moduli of smoothness of vector valued functions of a real variable and applications, Numer. Funct. Anal. and Optimiz. 11(5&6)(1990), 497–509.

    Article  MathSciNet  MATH  Google Scholar 

  19. Dontchev, A. L., and Lempio, F.: Difference methods for differential inclusions: A survey, SIAM Review 34(2)(1992), 263–294.

    Article  MathSciNet  MATH  Google Scholar 

  20. Ernstberger, P.: Algorithmen höherer Ordnung zur Approximation erreichbarer Mengen, Diplomarbeit, Universität Bayreuth, Bayreuth, 1994.

    Google Scholar 

  21. Hörmander, P. L.: Sur la fonction d’appui des ensembles convexes dans un espace localement convexe, Ark. Mat. 3(12)(1954), 181–186.

    Google Scholar 

  22. Ioffe, A. D., and Tihomirov, V. M.: Theory of Extremal Problems, North-Holland Publishing Company, Amsterdam-New York-Oxford, 1979.

    MATH  Google Scholar 

  23. Kastner-Maresch, A., and Lempio, F.: Difference methods with selection strategies for differential inclusions, Numer. Funct. Anal. and Optimiz. 14(5&6)(1993), 555–572.

    Article  MathSciNet  MATH  Google Scholar 

  24. Nikol’skiy, M. S.: Approximation of a continuous multivalued mapping by constant multivalued mappings, Vestnik Mosk. Univ., Vych. Mat. Kybern. 1, (1990), 73–76.

    Google Scholar 

  25. Nikol’skiy, M. S.: Approximation of continuous multivalued mappings with convex range, Soviet Math. Dokl. 40(2) (1990), 406–409.

    MathSciNet  Google Scholar 

  26. Polovinkin, E. S.: On integration of multivalued mappings, Soviet Mathematics Doklady 28(1)(1983), 223–228.

    MATH  Google Scholar 

  27. Polovinkin, E. S.: Teoria mnogoznatschnych otobrazchenij, Moscowskij Ordena Trudowogo Krasnogo Znameni Phisiko-Technitscheskij Institut, 1983.

    Google Scholar 

  28. Rådström, H.: An embedding theorem for spaces of convex sets, Proc. Amer. Math. Soc. 3(1952), 165–169.

    MathSciNet  MATH  Google Scholar 

  29. Rockafellar, R. T.: Convex Analysis, Princeton Univ. Press, Princeton, 1970.

    MATH  Google Scholar 

  30. Schmidt, K. D.: Embedding theorems for classes of convex sets, Acta Applicandae Mathernaticae 5(1986), 209–237.

    Article  MATH  Google Scholar 

  31. Sendov, B., and Popov, V.: Averaged Moduli of Smoothness, John Wiley and Sons, Chichester-New York-Brisbane-Toronto-Singapore, 1988.

    MATH  Google Scholar 

  32. Stoer, J., and Bulirsch, R.: Introduction to Numerical Analysis, 2nd Edition, Springer-Verlag, Berlin-Heidelberg-New York, 1993.

    MATH  Google Scholar 

  33. Veliov, V. M.: Second order discrete approximations to strongly convex differential inclusions, Systems and Control Letters 13(1989), 263–269.

    Article  MathSciNet  MATH  Google Scholar 

  34. Veliov, V. M.: Second order discrete approximations to linear differential inclusions, SIAM J. Nunner. Anal. 29(2)(1992), 439–451.

    Article  MathSciNet  MATH  Google Scholar 

  35. Vitale, A. R.: Approximation of convex set-valued functions, J. Appr. Theory 26(1979), 301–316.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Lempio, F. (1995). Set-Valued Interpolation, Differential Inclusions, and Sensitivity in Optimization. In: Lucchetti, R., Revalski, J. (eds) Recent Developments in Well-Posed Variational Problems. Mathematics and Its Applications, vol 331. Springer, Dordrecht. https://doi.org/10.1007/978-94-015-8472-2_6

Download citation

  • DOI: https://doi.org/10.1007/978-94-015-8472-2_6

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-4578-2

  • Online ISBN: 978-94-015-8472-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics