Advertisement

Smooth Variational Principles and non Smooth Analysis in Banach Spaces

  • R. Deville
Part of the Mathematics and Its Applications book series (MAIA, volume 331)

Abstract

Variational principles are well established tools to deal with minimization problems without compactness. We present here recent developments on smooth variational principles. In particular, we show how the smooth variational principle of R. Deville, G. Godefroy and V. Zizler allows to develop a differential calculus for non smooth functions in smooth Banach spaces. This calculus is useful for solving Hamilton-Jacobi equations in infinite dimensions since the “right” solutions of these equations are usually not smooth.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aubin, J. P. and Frankowska, H.: Set-Valued Analysis, Birkhaüser, Basel, 1990.zbMATHGoogle Scholar
  2. 2.
    Borwein, J. M. and Preiss, D.: A smooth variational principle with applications to subdifferentiability and to differentiability of convex functions, Trans. Amer. Math. Soc. 303 (1987), 517–527.MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Clarke, F.: Generalized gradients and applications, Trans. Amer. Math. Soc. 205(1975), 247–262.MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Crandall, M. G. and Lions, P. L.: Viscosity solutions of Hamilton-Jacobi equations, Trans. Amer. Math. Soc. 277(1983), 1–42.MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    Crandall, M. G. and Lions, P. L.: Hamilton-Jacobi equations in infinite dimensions, J. Funct. Anal. Part I: Uniqueness of viscosity solutions, 62 379–396, (1985);MathSciNetzbMATHCrossRefGoogle Scholar
  6. 5a.
    Crandall, M. G. and Lions, P. L.: Part II: Existence of viscosity solutions, J. Funct. Anal. 65 368–405, (1986);MathSciNetzbMATHCrossRefGoogle Scholar
  7. 5b.
    Crandall, M. G. and Lions, P. L.: Part III: Existence of viscosity solutions, J. Funct. Anal. 68 214–247, (1986);MathSciNetzbMATHCrossRefGoogle Scholar
  8. 5c.
    Crandall, M. G. and Lions, P. L.: Part IV: Unbounded linear terms, J. Funct. Anal. 90 237–283, (1990);MathSciNetzbMATHCrossRefGoogle Scholar
  9. 5d.
    Crandall, M. G. and Lions, P. L.: Part V: B-continuous solutions, J. Funct. Anal. 97 417–465, (1991); Part VI: Nonlinear A and Tataru’s method refined, in press; Part VII: The HJB equation is not always satisfied, in press.MathSciNetzbMATHCrossRefGoogle Scholar
  10. 6.
    Deville, R.: A mean value theorem for non differentiable mappings, to appear in Serdica Math. J. Google Scholar
  11. 7.
    Deville, R.: Stability of subdifferentials of nonconvex functions in Banach spaces, Set-valued Analysis 2 (1994) 141–157 (H. Attouch and M. Théra (eds)).MathSciNetzbMATHCrossRefGoogle Scholar
  12. 8.
    Deville, R. and El Haddad, E. M.: The subdifferential of the sum of two functions in Banach spaces, I. First order case, preprint 1994.Google Scholar
  13. 9.
    Deville, R. and El Haddad, E. M.: The subdifferential of the sum of two functions in Banach spaces, II. Second order case, to appear in Bull. Austr. Math. Soc. Google Scholar
  14. 10.
    Deville, R., Fonf, V. and Hajek, P.: Analytic and polyhedral approximation of norms in separable Banach spaces, to appear in Isr. J. Math. Google Scholar
  15. 11.
    Deville, R., Godefroy, G. and Zizler, V.: A smooth variational principle with applications to Hamilton-Jacobi equations in infinite dimensions, J. Funct. Anal. 111(1993), 197–212.MathSciNetzbMATHCrossRefGoogle Scholar
  16. 12.
    Deville, R., Godefroy, G. and Zizler, V.: Smoothness and renormings in Banach spaces, Pitman Monographs in Mathematics 64, Longman Scientific and Technical, 1993.zbMATHGoogle Scholar
  17. 13.
    Ekeland, I.: Nonconvex minimization problems, Bull. Amer. Math. Soc. 1(1979), 443–474.MathSciNetzbMATHCrossRefGoogle Scholar
  18. 14.
    Fabian, M.: Subdifferentials, local e-supports and Asplund spaces, J. London Math. Soc. 34(1986), 568–576.MathSciNetzbMATHCrossRefGoogle Scholar
  19. 15.
    Fabian, M.: Subdifferentiability and trustworthiness in the light of a new variational principle of Borwein and Preiss, Acta Univ. Carolinae 30(1989), 51–56.MathSciNetzbMATHGoogle Scholar
  20. 16.
    Fabian, M., Hajek, P. and Vanderwerff, J.: Variations on the smooth variational principle, preprint, 1992.Google Scholar
  21. 17.
    Haydon, R. G.: A counterexample to several questions about scattered compact spaces, Bull. London Math. Soc. 22(1990), 261–268.MathSciNetzbMATHCrossRefGoogle Scholar
  22. 18.
    Haydon, R. G.: Trees and renorming theory, preprint, 1992.Google Scholar
  23. 19.
    Haydon, R. G.: Normes infiniment differentiables sur certains espaces de Banach, C. R. Acad. Sci. Paris 315 Série I (1992), 1175–1178.MathSciNetzbMATHGoogle Scholar
  24. 20.
    Ioffe, A. D.: On subdifferentiability spaces, Ann. New York Acad. Sci. 410(1983), 107–119.MathSciNetCrossRefGoogle Scholar
  25. 21.
    Ioffe, A. D. and Penot, J. P.: On second order subdifferentials, in preparation.Google Scholar
  26. 22.
    Ivanov M.: Mean value inequalities, in preparation.Google Scholar
  27. 23.
    Jensen, R.: The maximum principle for viscosity solutions of fully nonlinear second order partial differential equations, Arch. Rat. Mech. Anal. 101(1988), 1–27.zbMATHCrossRefGoogle Scholar
  28. 24.
    Maaden, A.: On the smooth drop theorem, to appear in Rocky Mountain J. Math. Google Scholar
  29. 25.
    Preiss, D.: Differentiability of Lipschitz functions on Banach spaces, J. Funct. Anal. 91(1990), 312–345.MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1995

Authors and Affiliations

  • R. Deville
    • 1
  1. 1.Laboratoire de MathématiquesUniversité Bordeaux ITalenceFrance

Personalised recommendations