Advertisement

The Minimax Approach to the Critical Point Theory

  • M. Conti
  • R. Lucchetti
Part of the Mathematics and Its Applications book series (MAIA, volume 331)

Abstract

Note for the reader. Looking at the many applications of the Ekeland Variational Principle, some 2 years ago we met the Mountain Pass Theorem of Ambrosetti—Rabinowitz. This stimulated us to know more about Critical Point Theory, and to better understand the fascinating interplay between the topological and differential ideas of the minimax approach.

Keywords

Banach Space Critical Point Theory Mountain Pass Theorem Minimax Approach Ekeland Variational Principle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ekeland, I.: The Mountain Pass Theorem and some applications, Minimax results of Ljusternik-Schnirelnan type and applications, Part 2 of the Proceedings of the NATO ASI Variational Methods in Nonlinear Problems, Séminaire de Mathématiques Superieures, Département de Mathématiques et de Statistique, Université de Montréal, 1989.Google Scholar
  2. 2.
    Kavian, O.: Introduction à la théorie des points critiques, Springer Verlag, Berlin, 1993.zbMATHGoogle Scholar
  3. 3.
    Mawhin, J. and Willem, M.: Critical Point Theory and Haniltonian systems, Springer Verlag, Berlin, 1989.Google Scholar
  4. 4.
    Rabinowitz, P.H.: Minimax methods in Critical Point Theory with applications to differential equations, CBMS Regional Conference Series in Mathematics, Amer. Math. Soc. 65, 1986.Google Scholar
  5. 5.
    Solimini, S.: Notes on min-max theorems, SISSA, Trieste 1989.Google Scholar
  6. 6.
    Struwe, M.: Variational methods, Springer Verlag, Berlin, 1990.zbMATHGoogle Scholar
  7. 7.
    Szulkin, A.: Critical Point Theory of Ljusternik-Schnirelrnan type and applications to partial differential equations, Minimax results of Ljusternik-Schnirelman type and applications, Part 2 of the Proceedings of the NATO ASI Variational Methods in Nonlinear Problems, Séminaire de Mathématiques Superieures, Département de Mathématiques et de Statistique, Université de Montréal, 1989.Google Scholar
  8. 8.
    Ambrosetti, A. and Rabinowitz, P.H.: Dual variational methods in critical point theory and applications, J. Funct. Anal. 14 (1973), 349–381.MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    Benci, V. and Rabinowitz, P.H.: Critical points for indefinite functionals, Inv. Math. 52 (1989), 241–273.MathSciNetCrossRefGoogle Scholar
  10. 10.
    Brezis, H. and Niremberg, L.: Remarks on Finding Critical Points, Comm. Pure Appl. Math. 44 (1991), 939–963.MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    Fadell, E. and Husseini, S.: Relative cohomological index theories, Advances in Math. 64 (1987), 1–31.MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    Fadell, E. and Husseini, S.: Infinite cuplength in free loop spaces with an application to a problem of the N-body type, Ann. Inst. H. Poincaré, Anal. Non Linéaire 9 (1992), 305–319.MathSciNetzbMATHGoogle Scholar
  13. 13.
    Fadell, E. and Rabinowitz, P. H.: Generalized cohomological index theories for Lie group actions with applications to bifurcation questions for Hamiltonian systems, Inv. Math. 45 (1978), 139–174.MathSciNetzbMATHCrossRefGoogle Scholar
  14. 14.
    Fournier, G., Lupo, D., Ramos, M. and Willem, M.: Limit relative category and critical point theory, Dynamic Reported 3 (1993).Google Scholar
  15. 15.
    Ghoussoub, N. and Preiss, D.: A general mountain pass principle for locating and classifying critical points, Ann. Inst. H. Poincaré, Anal. Non Linéaire 6 (1989), 321–330.MathSciNetzbMATHGoogle Scholar
  16. 16.
    Hofer, H.: A geometric description of the neighbourhood of a critical point given by the mountain pass theorem, J. London Math. Soc. 31 (1985), 566–570.MathSciNetzbMATHCrossRefGoogle Scholar
  17. 17.
    Majer, P.: Ljusternik-Schnirelman theory with local Palais-Smale condition and singular dynamic systems, Ann. Inst. H. Poincaré 8 (1991), 459–476.MathSciNetzbMATHGoogle Scholar
  18. 18.
    Majer, P. and Terracini, S.: Periodic solutions to some N-body type problems, Arch. Rational Mech. Anal. 124 (1993), 381–404.MathSciNetzbMATHCrossRefGoogle Scholar
  19. 19.
    Majer, P. and Terracini, S.: Multiple periodic solutions to some N-body type problems via a collision index, Proceedings of the Meeting “Scuola G. Stampacchia”, Erice, 1992.Google Scholar
  20. 20.
    Majer, P. and Terracini, S.: On the existence of infinitely many periodic solutions to some problems of N-body type, to appear on Comm. Pure Appl. Math. Google Scholar
  21. 21.
    Palais, R.: Ljusternik-Schnirelman theory on Banach manifolds, Topology 5 (1966), 115–132.MathSciNetzbMATHCrossRefGoogle Scholar
  22. 22.
    Palais, R. and Smale, S.: A generalized Morse theory, Bull. Amer. Math. Soc. 70 (1964), 165–171.MathSciNetzbMATHCrossRefGoogle Scholar
  23. 23.
    Pucci, P. and Serrin, J.: The structure of the critical set in the mountain pass theorem, Trans. Amer. Math. Soc. 91 (1987), 115–132.MathSciNetCrossRefGoogle Scholar
  24. 24.
    Pucci, P. and Serrin, J.: Extensions of the mountain pass theorem, J. Funct. Analysis 59 (1984), 185–210.MathSciNetzbMATHCrossRefGoogle Scholar
  25. 25.
    Shafrir, I.: A deformation lemma, C.R. Acad. Sci. Paris, 313, Série I (1991), 599–602.MathSciNetzbMATHGoogle Scholar
  26. 26.
    Canino, A.: Multiplicity of solutions for quasilinear elliptic equations, preprint, Università della Calabria, 1994.Google Scholar
  27. 27.
    Canino, A. and Degiovanni, M.: Nonsmooth critical point theory and quasilinear elliptic equations, Topological Meth. in Diff. Eq. and Inclusions, (Montreal 1994), NATO ASI Series, C, Reidel, Dordrecht, in press.Google Scholar
  28. 28.
    Canino, A. and Perri, U.: Constrained problems in Banach spaces with an application to variational inequalities, Nonlinear Anal., in press.Google Scholar
  29. 29.
    Chang, K.C.: Variational methods for non differentiable functionals and its applications to vartial differential equations, J. Math. Anal. Appl. 80 (1981), 102–129.MathSciNetzbMATHCrossRefGoogle Scholar
  30. 30.
    Choulli, M., Deville, R. and Rhandi, A.: A general mountain pass principle for non differentiable functionals and applications, to appear in Rev. Mat. Iberoanericana. Google Scholar
  31. 31.
    Clarke, F.H.: Optimization and nonsmooth analysis, J. Wiley & Sons, Inc., New York, 1983.zbMATHGoogle Scholar
  32. 32.
    Corvellec, J.N., Degiovanni, M. and Marzocchi, M.: Deformation properties for continuous functionals and critical point theory, Topological Methods in Nonlinear Analusis 1 (1993), 151–171.MathSciNetzbMATHGoogle Scholar
  33. 33.
    Conti, M.: Walking around mountains, to appear on Rendiconti del Senninario Matematico e Fisico di Milano. Google Scholar
  34. 34.
    Degiovanni, M.: Homotopical properties of a class of nonsmooth functions, Ann. Mat. Pura A vol. 156 (1990), 37–71.MathSciNetzbMATHCrossRefGoogle Scholar
  35. 35.
    Degiovanni, M.: Variational methods in bifurcation problems for variational inequ — ities, Publication of the Charles University of Prague, 1993.Google Scholar
  36. 36.
    Degiovanni, M., Marino, A. and Tosques, M.: Evolution equations with lack of convexity, Non Linear Anal. 9 (1985), 1401–1443MathSciNetzbMATHCrossRefGoogle Scholar
  37. 37.
    Degiovanni, M. and Marzocchi, M.: A critical point theory for nonsmooth functionals, Ann. Mat. Pura Appl. t. 167 (1994), 73–100.MathSciNetzbMATHCrossRefGoogle Scholar
  38. 38.
    Ioffe, A. and Schwartzman, E.: Critical point theory without differentiability, preprint 1992.Google Scholar
  39. 39.
    Katriel, G.: Mountain pass theorems and global homeomorphism theorems, to appear in Ann. Inst. H. Poincaré, Anal. Non Linéaire. Google Scholar
  40. 40.
    Lancelotti, S.: Perturbations of symmetric constraints in eigenvalue problems for variational inequalities, preprint 1994.Google Scholar
  41. 41.
    Marino, A. and Scolozzi, D.: Geodetiche con ostacolo, Boll. Un. Mat. Ital. B 2 (1983), 1–31.MathSciNetGoogle Scholar
  42. 42.
    Ribarska, N.K., Tsachev, T.Y. and Krastanov, M.I.: On the general mountain pass principle of Ghoussoub-Preiss, Mathenatica Balkanica 5 (1991), 350–358.MathSciNetzbMATHGoogle Scholar
  43. 43.
    Ribarska, N.K., Tsachev, T.Y. and Krastanov, M.I.: Ljusternik—Schnirelman theory and Mountain Pass Theorem on C1—Finsler manifolds, preprint 1993.Google Scholar
  44. 44.
    Szulkin, A.: Minimax principles for lower semicontinuous functions and applications to non linear boundary value problems, Ann. Inst. H. Poincaré, Anal. Non Linéaire 3 (1986), 77–109.MathSciNetzbMATHGoogle Scholar
  45. 45.
    Szulkin, A.: Ljusternik—Schnilerman theory on C1 manifolds, Ann. Inst. H. Poincaré, Anal. Non Linéaire 5 (1988), 119–139.MathSciNetzbMATHGoogle Scholar
  46. 46.
    Tersian, S.: A note on Palais-Smale condition and mountain pass principle for locally Lipschitz functionals, preprint 1993.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1995

Authors and Affiliations

  • M. Conti
    • 1
  • R. Lucchetti
    • 1
  1. 1.Dipartimento di MatematicaUniversità di MilanoMilanoItaly

Personalised recommendations