Advertisement

Various Aspects of Well-Posedness of Optimization Problems

  • J. P. Revalski
Part of the Mathematics and Its Applications book series (MAIA, volume 331)

Abstract

Generally speaking the different notions of well-posedness of a given optimization problem can be divided into two groups. In the first group the notions are based on the behaviour of a prescribed class of sequences of approximate solutions and in the second on the continuous dependence of the (necessarily existing) solution on the data of the problem.

Keywords

Minimization Problem Normed Linear Space Order Unit Constrain Minimization Problem Convex Minimization Problem 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Attouch, H., Lucchetti, R. and Wets, R.: The topology of the p-Hausdorff distance, Annali di Maternatica Pura Appl. 4(1991), 303–320.MathSciNetCrossRefGoogle Scholar
  2. 2.
    Attouch, H. and Wets, R.: Quantitative stability of variational systems, Trans. Amer. Math. Soc. 328(1991), 695–730.MathSciNetzbMATHGoogle Scholar
  3. 3.
    Atsuji, M.: On uniform continuity of continuous functions on metric spaces, Pacific J. Math. 8(1958), 11–16.MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Azé, D. and Penot, J.-P.: Operations on convergent families of sets and functions, Optimization 21(1990), 521–534.MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    Bednarczuk, E. and Penot, J.-P.: On the positions of the notions of well-posed minimization problems, Bollettino U.M.I. (7) 6-B(1992), 665–683.MathSciNetGoogle Scholar
  6. 6.
    Bednarczuk, E. and Penot, J.-P.: Metrically well-set minimization problems, Ann!. Math. Opt. 26(1992). 273–285.MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    Beer, G.: Convergence of continuous linear functionals and their level sets, Arch. Math. 52 (1989). 482–491.MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    Beer, G.: Topologies on closed and closed convex sets, Mathematics and its Applications, Vol. 268, Kluwer Academic Publishers, Dordrecht, 1993.zbMATHGoogle Scholar
  9. 9.
    Beer, G. and Lucchetti, R.: Convex optimization and the epi-distance topology, Trans. Amer. Math. Soc. 327(1991i, 795–813.MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    Beer, G. and Lucchetti, R.: Solvability for constrained problems, Preprint Univ. Degli Stucli di Milano. Dinartimento di Mat., Quaderno n.3, 1991.Google Scholar
  11. 11.
    Beer, G. and Lucchetti, R.: The epi-distance topology: continuity and stability results with application to convex optimization problems, Math. Oper. Res. 17(1992), 715–726.MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    Berdishev, V.I.: Stability of the minimum problem under perturbation of the constrained set, (in Russian), USSR Math. Sbornik 103(1977), 467–479.Google Scholar
  13. 13.
    Čoban, M.M., Kenderov, P.S. and Revalski, J.P.: Generic well-posedness of optimization problems in topological spaces, Mathernatika 36(1989), 301–324.zbMATHGoogle Scholar
  14. 14.
    Čoban, M.M., Kenderov, P.S. and Revalski, J.P.: Topological spaces related to the Banach-Mazur game and the generic well-posedness of optimization problems, Set-valued Analysis, to appear.Google Scholar
  15. 15.
    Dontchev, A. and Zolezzi, T.: Well-posed Optimization Problems, Lecture Notes in Mathematics, Vol. 1543, Springer Verlag, Berlin, 1993.zbMATHGoogle Scholar
  16. 16.
    Furi, M. and Vignoli, A.: About well-posed minimization problems for functinnals in metric spaces. J. Opt. Theoru Appl. 5(1970), 225–290.zbMATHCrossRefGoogle Scholar
  17. 17.
    Holmes, R.: A course in Optimization and Best Approximation, Springer Verlag, New York, 1972.Google Scholar
  18. 18.
    Holmes, R.: Geometric Functional Analysis and its Applications, Springer Verlag, New York, 1975.zbMATHGoogle Scholar
  19. 19.
    Konsulova, A.S. and Revalski, J.P.: Constrained convex optimization problemswell-posedness and stability. Preprint 1993.Google Scholar
  20. 20.
    Kuratowski, K.: Topology I, Academic Press, New York, 1966.Google Scholar
  21. 21.
    Lemaire, B.: Bonne position, conditionnement, et bon comportement asympotique, Séminaire d’Analyse Convex, Montpellier (1992), exp. N. 5.Google Scholar
  22. 22.
    Levitin, E.S. and Polyak, B.T.: Convergence of minimizing sequences in conditional extremum problems, Soviet Math. Dokl. 7(1966), 764–767.zbMATHGoogle Scholar
  23. 23.
    Lucchetti, R.: Some aspects of the connection between Hadamard and Tykhonov well-posedness of convex problems, Bollettino U.M.I., Ser. C, 6(1982). 337–345.MathSciNetGoogle Scholar
  24. 24.
    Lucchetti, R.: On the continuity of the minima for a family of constrained optimization problems. Nurner. Funct. Anal. Optim. 7(1985). 337–362.Google Scholar
  25. 25.
    Lucchetti, R.: Personal communication.Google Scholar
  26. 26.
    Lucchetti, R. and Patrone, F.: A characterization of Tykhonov well-posedness for minimum problems, with applications to variational inequalities, Numer. Funct. Anal. Optim. 3(4) (1981), 461–476.MathSciNetzbMATHCrossRefGoogle Scholar
  27. 27.
    Lucchetti, R. and Patrone, F.: Hadamard and Tykhonov well-posedness of a certain class of convex functions, J. Math. Anal. Appl. 88(1982), 204–215.MathSciNetzbMATHCrossRefGoogle Scholar
  28. 28.
    Lucchetti, R., Shunmugaraj, P. and Sonntag, Y.: Recent hypertopologies and continuity of the value function and of the constrained level sets, Numer. Funct. Anal. Optim. 14(1993), 103–113.MathSciNetzbMATHCrossRefGoogle Scholar
  29. 29.
    Mosco, U.: Convergence of convex sets and of solutions of variational inequalities, Adv. Math. 3(1969), 510–585.MathSciNetzbMATHCrossRefGoogle Scholar
  30. 30.
    Patrone, F.: Well-posedness as an ordinal property, Riv. Mat. Pura Appl., 1(1987), 95–104.MathSciNetzbMATHGoogle Scholar
  31. 31.
    Penot, J.-P. and Théra, M.: Semi-continuité des applications et des multiapplications, C. R. Acad. Sc. Paris 288(1979), Série A, 241–244.zbMATHGoogle Scholar
  32. 32.
    Revalski, J.P.: Generic properties concerning well-posed optimization problems, Cornpt. Rend. Acad. Bulg. Sci., 38(1985), 1431–1434.MathSciNetzbMATHGoogle Scholar
  33. 33.
    Revalski, J.P.: Generic well-posedness in some classes of optimization problems, Acta Univ. Carolinae Math. et Phys. 28(1987), 117–125.MathSciNetzbMATHGoogle Scholar
  34. 34.
    Revalski, J.P.: Well-posedness almost everywhere in a class of constrained convex optimization problems, in Mathematics and Education in Mathematics, Proc. 17-th Spring Conf. of the Union of the Bulg. Mathematicians, Sunny Beach, April 1988, pp.348–353.Google Scholar
  35. 35.
    Revalski, J.P.: Well-posedness of optimization problems: A survey, in P.L. Papini (ed.) Functional Analysis and Approximation, Pitagora Editrice, Bologna, 1988, pp. 238–255.Google Scholar
  36. 36.
    Revalski, J.P.: A note on Hadamard and strong well-posedness for convex programs. Preprint 1994.Google Scholar
  37. 37.
    Revalski, J.P. and Zhivkov, N.V.: Well-posed constrained optimization problems in metric spaces, J. Opt. Theory Appl. 76(1993), 145–163.MathSciNetzbMATHCrossRefGoogle Scholar
  38. 38.
    Shunmugaraj, P.: On stability aspects in optimization, PhD Dissertation, Indian Inst. of Technology, Bombay, 1990.Google Scholar
  39. 39.
    Shunmugaraj, P.: Well-set and well-posed minimization problems, Preprint 1994.Google Scholar
  40. 40.
    Shunmugaraj, P. and Pai, D.V.: On stability of approximate solutions of minimization problems, Numer. Funct. Anal. Optim. 12(1991), 599–610.MathSciNetGoogle Scholar
  41. 41.
    Tykhonov, A.N.: On the stability of the functional optimization problem, USSR J. Comp. Math. Math. Phys. 6(1966), 631–634.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1995

Authors and Affiliations

  • J. P. Revalski
    • 1
  1. 1.Institute of MathematicsBulgarian Academy of SciencesSofiaBulgaria

Personalised recommendations