Skip to main content

A Survey on Old and Recent Results about the Gap Phenomenon in the Calculus of Variations

  • Chapter
Recent Developments in Well-Posed Variational Problems

Part of the book series: Mathematics and Its Applications ((MAIA,volume 331))

Abstract

The term Lavrentiev phenomenon refers to the quite surprising feature of some functionals of the calculus of variations to possess different infima if considered on the full class of admissible functions and on the smaller class of regular admissible functions. The first example was found by Lavrentiev [33] in 1926, and since then many authors have considered this problem from different point of view (see References). In particular:

  1. (a)

    Manià [35], Heinricher and Mizel [29] simplified the original Lavrentiev example;

  2. (b)

    Ball and Mizel [6], [7], Davie [23], Loewen [34] demonstrated that the phenomenon can occur even with fully regular integrands;

  3. (c)

    Angell [4], Cesari [16], Clarke and Vinter [21] devised conditions which forestall occurrence of the phenomenon;

  4. (d)

    Ball and Mizel [7], Heinricher and Mizel [29] sharpened the specification of the precise dense subclass of admissible functions for which the Lavrentiev gap occurs;

  5. (e)

    Heinricher and Mizel [28], [30] presented an analogous gap phenomenon in stochastic control and in certain deterministic Bolza problems;

  6. (f)

    Ball and Mizel [7] investigated about the presence of the Lavrentiev phenomenon in certain problems of nonlinear elasticity, where it seems related to the formation of fractures;

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alberti, G. and Majer, P.: Gap phenomenon for some autonomous functionals, J. Conv. Anal., to appear.

    Google Scholar 

  2. Alberti, G. and Serra Cassano, F.: Non-occurrence of gap for one-dimensional autonomous functionals, in Proceedings of Calculus of Variations, Homogenization, and Continuum Mechanics, CIRM, Marseille-Luminy, 21–25 June 1993, World Scientific, Singapore, 1994, pp. 1–17.

    Google Scholar 

  3. Ambrosio, L., Ascenzi, O. and Buttazzo, G.: Lipschitz regularity for minimizers of integral functionals with highly discontinuous integrands, J. Math. Anal. Appl. 142 (1989), 301–316.

    Article  MathSciNet  MATH  Google Scholar 

  4. Angell, T.S.: A note on the approximation of optimal solutions of the calculus of variations, Rend. Circ. Mat. Palermo 2 (1979), 258–272.

    Article  MathSciNet  Google Scholar 

  5. Ball, J.M. and Knowles, G.: A numerical method for detecting singular minimizers, Numer. Math. 51 (1987), 181–197.

    Article  MathSciNet  MATH  Google Scholar 

  6. Ball, G.M. and Mizel, V.J.: Singular minimizers for regular one-dimensional problems in the calculus of variations, Bull. Amer. Math. Soc. 11 (1984), 143–146.

    Article  MathSciNet  MATH  Google Scholar 

  7. Ball, J.M. and Mizel, V.J.: One-dimensional variational problems whose minimizers do not satisfy the Euler-Lagrange equation, Arch. Rational Mech. Anal. 90 (1985), 325–388.

    Article  MathSciNet  MATH  Google Scholar 

  8. Ball, J.M. and Nadirashvili, N.S.: Universal singular set for one dimensional variational problems, Preprint, Heriot-Watt University, Edinburgh, 1994.

    Google Scholar 

  9. Belloni, M.: Tesi di Dottorato (in preparation).

    Google Scholar 

  10. Belloni, M.: Interpretation of the Lavrentiev phenomenon by relaxation : the higher order case, Trans. Amer. Math. Soc., to appear.

    Google Scholar 

  11. Bethuel, F., Brezis, H. and Coron, J.M.: Relaxed energies for harmonic maps, Proceedings of Variational Methods, Paris, June 1988, Birkhäuser, Boston, 1990, pp.37–52.

    Google Scholar 

  12. Buttazzo, G.: Sernicontinuity, Relaxation and Integral Representation in the Calculus of Variations, Pitman Res. Notes Math. Ser. 207, Longman, Harlow, 1989.

    Google Scholar 

  13. Buttazzo, G.: The Lavrentiev phenomenon for variational problems, Proceedings of “Nonlinear Analysis — Calculus of Variations”, Perugia, 9–12 May 1993, to appear.

    Google Scholar 

  14. Buttazzo, G. and Mizel, V.J.: Interpretation of the Lavrentiev phenomenon by relaxation, J. Funct. Anal. 110 (1992), 434–460.

    Article  MathSciNet  MATH  Google Scholar 

  15. Buttazzo, G. and Mizel, V.J.: On a Gap Phenomenon for Isoperimetrically Constrained Variational Problems, Preprint, Dipartimento di Matematica Università di Pisa, Pisa, 1994.

    Google Scholar 

  16. Cesari, L.: Optirnization- Theory and Applications, Springer-Verlag, Berlin, 1983.

    Google Scholar 

  17. Cesari, L. and Angell, T.S.: On the Lavrentiev phenomenon, Calcolo 22 (1985), 17–29.

    Article  MathSciNet  MATH  Google Scholar 

  18. Cheng, C.W.: The Lavrentiev Phenomenon and Its Applications in Nonlinear Elasticity, Ph.D. Thesis, Carnegie Mellon University, Pittsburgh, 1993.

    Google Scholar 

  19. Cheng, C.W. and Mizel, V.J.: On the Lavrentiev phenomenon for autonomous second order integrands, Arch. Rational Mech. Anal. 126 (1994), 21–34.

    Article  MathSciNet  MATH  Google Scholar 

  20. Chiadò Piat, V. and Serra Cassano, F.: Some remarks about the density of smooth functions in weighted Sobolev spaces, Preprint, Dipartimento di Matematica Università di Trento, Trento, 1993.

    Google Scholar 

  21. Clarke, F.H. and Vinter, R.B.: Regularity properties of solutions to the basic problem in the calculus of variations, Trans. Amer. Math. Soc. 291 (1985), 73–98.

    Article  MathSciNet  Google Scholar 

  22. Corbo Esposito, A. and De Arcangelis, R.: Comparison results for some types of relaxation of variational integral functionals, Ann. Mat. Pura Appl. 164 (1994), 155–193.

    Article  Google Scholar 

  23. Davie, A.M.: Singular minimizers in the calculus of variations in one dimension, Arch. Rational Mech. Anal. 101 (1988), 161–177.

    Article  MathSciNet  MATH  Google Scholar 

  24. De Arcangelis, R.: Some remarks on the identity between a variational integral and its relaxed functional, Ann. Univ. Ferrara 35 (1989), 135–145.

    MATH  Google Scholar 

  25. De Arcangelis, R.: The Lavrentieff phenomenon for quadratic functionals, Preprint, Dipartimento di Matematica Università di Napoli, Napoli, 1993.

    Google Scholar 

  26. Giaquinta, M., Modica, G. and Soucek, J.: The Dirichlet energy of mappings with values into the sphere, Manuscripta Math. 65 (1989), 489–507.

    Article  MathSciNet  MATH  Google Scholar 

  27. Heinricher, A.C.: A singular stochastic control problem arising from a deterministic problem with non-Lipschitzian minimizers, Dissertation, Carnegie Mellon Math. Dept., 1986.

    Google Scholar 

  28. Heinricher, A.C. and Mizel, V.J.: A stochastic control problem with different value functions for singular and absolutely continuous control, Proceedings 25th IEEE Conference on Decision and Control, Athens 1986, pp.134–139.

    Google Scholar 

  29. Heinricher, A.C. and Mizel, V.J.: The Lavrentiev phenomenon for invariant variational problems, Arch. Rational Mech. Anal. 102 (1988), 57–93.

    Article  MathSciNet  MATH  Google Scholar 

  30. Heinricher, A.C. and Mizel, V.J.: A new example of the Lavrentiev phenomenon, SIAM J. Control Optim. 26 (1988), 1490–1503.

    Article  MathSciNet  MATH  Google Scholar 

  31. Kilpelainen, T. and Lindqvist, P.: The Lavrentiev phenomenon and the Dirichlet integral, Proc. Amer. Math. Soc., to appear.

    Google Scholar 

  32. Knowles, G.: Finite element approximation to singular minimizers, and applications to cavitation in nonlinear elasticity, Proceedings of Differential Equations and Mathematical Physics, Birmingham 1986, Lecture Notes in Math. 1285, Springer Verlag, Berlin, 1987, pp. 236–247.

    Google Scholar 

  33. Lavrentiev, M.: Sur quelques problèmes du calcul des variations, Ann. Mat. Pura Appl. 4 (1926), 107–124.

    Google Scholar 

  34. Loewen, P.D.: On the Lavrentiev phenomenon, Canad. Math. Bull. 30 (1987), 102–108.

    Article  MathSciNet  MATH  Google Scholar 

  35. Manià, B.: Sopra un esempio di Lavrentieff, Boll. Un. Mat. Ital. 13 (1934), 146–153.

    Google Scholar 

  36. Marcellini, P.: Approximation of quasiconvex functions and lower semicontinuity of multiple integral, Manuscripta Math. 51 (1985), 1–28.

    Article  MathSciNet  MATH  Google Scholar 

  37. Mizel, V.J.: The Lavrentiev phenomenon in both deterministic and stochastic optimization problems, Proceedings of Integral Functionals in Calculus of Variations, Trieste 1985, Suppl. Rend. Circ. Mat. Palermo 15 (1987), 111–130.

    Google Scholar 

  38. Percivale, D.: Nonoccurence of the Lavrentiev phenomenon for a class of non coercive integral functionals, Preprint, Dipartimento di Matematica, Università di Genova, Genova, 1994.

    Google Scholar 

  39. Sychev, M.A.: On the regularity of solutions of some variational problems, Soviet Math. Dokl. 43 (1991), 292–296.

    MathSciNet  MATH  Google Scholar 

  40. Sychev, M.A.: On a classical problem of the Calculus of Variations, Soviet Math. Dokl. 44 (1992), 116–120.

    MathSciNet  Google Scholar 

  41. Sychev, M.A.: On the question of regularity of the solutions of variational problems, Russian Acad. Sci. Sb. Math. 75 (1993), 535–556.

    MathSciNet  Google Scholar 

  42. Tonelli, L.: Sur une méthode du calcul des variations, Rend. Circ. Mat. Palermo 39 (1915), 233–264.

    Article  MATH  Google Scholar 

  43. Tonelli, L.: Sur une question du calcul des variations, Rec. Math. Moscou 33 (1926), 87–98.

    MATH  Google Scholar 

  44. Zhikov, V.V: Averaging of Functionals of the Calculus of Variations and Elasticity Theory, Math. USSR Izv. 29 (1987), 33–66.

    Article  MATH  Google Scholar 

  45. Zolezzi, T.: Well-posedness and the Lavrentiev phenomenon, SIAM J. Control Optim. 30 (1992), 787–799.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Buttazzo, G., Belloni, M. (1995). A Survey on Old and Recent Results about the Gap Phenomenon in the Calculus of Variations. In: Lucchetti, R., Revalski, J. (eds) Recent Developments in Well-Posed Variational Problems. Mathematics and Its Applications, vol 331. Springer, Dordrecht. https://doi.org/10.1007/978-94-015-8472-2_1

Download citation

  • DOI: https://doi.org/10.1007/978-94-015-8472-2_1

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-4578-2

  • Online ISBN: 978-94-015-8472-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics