Advertisement

A Survey on Old and Recent Results about the Gap Phenomenon in the Calculus of Variations

  • G. Buttazzo
  • M. Belloni
Part of the Mathematics and Its Applications book series (MAIA, volume 331)

Abstract

The term Lavrentiev phenomenon refers to the quite surprising feature of some functionals of the calculus of variations to possess different infima if considered on the full class of admissible functions and on the smaller class of regular admissible functions. The first example was found by Lavrentiev [33] in 1926, and since then many authors have considered this problem from different point of view (see References). In particular:
  1. (a)

    Manià [35], Heinricher and Mizel [29] simplified the original Lavrentiev example;

     
  2. (b)

    Ball and Mizel [6], [7], Davie [23], Loewen [34] demonstrated that the phenomenon can occur even with fully regular integrands;

     
  3. (c)

    Angell [4], Cesari [16], Clarke and Vinter [21] devised conditions which forestall occurrence of the phenomenon;

     
  4. (d)

    Ball and Mizel [7], Heinricher and Mizel [29] sharpened the specification of the precise dense subclass of admissible functions for which the Lavrentiev gap occurs;

     
  5. (e)

    Heinricher and Mizel [28], [30] presented an analogous gap phenomenon in stochastic control and in certain deterministic Bolza problems;

     
  6. (f)

    Ball and Mizel [7] investigated about the presence of the Lavrentiev phenomenon in certain problems of nonlinear elasticity, where it seems related to the formation of fractures;

     

Keywords

Homogeneous Case Admissible Function Lipschitz Continuous Function Stochastic Control Problem Autonomous Functional 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alberti, G. and Majer, P.: Gap phenomenon for some autonomous functionals, J. Conv. Anal., to appear.Google Scholar
  2. 2.
    Alberti, G. and Serra Cassano, F.: Non-occurrence of gap for one-dimensional autonomous functionals, in Proceedings of Calculus of Variations, Homogenization, and Continuum Mechanics, CIRM, Marseille-Luminy, 21–25 June 1993, World Scientific, Singapore, 1994, pp. 1–17.Google Scholar
  3. 3.
    Ambrosio, L., Ascenzi, O. and Buttazzo, G.: Lipschitz regularity for minimizers of integral functionals with highly discontinuous integrands, J. Math. Anal. Appl. 142 (1989), 301–316.MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Angell, T.S.: A note on the approximation of optimal solutions of the calculus of variations, Rend. Circ. Mat. Palermo 2 (1979), 258–272.MathSciNetCrossRefGoogle Scholar
  5. 5.
    Ball, J.M. and Knowles, G.: A numerical method for detecting singular minimizers, Numer. Math. 51 (1987), 181–197.MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    Ball, G.M. and Mizel, V.J.: Singular minimizers for regular one-dimensional problems in the calculus of variations, Bull. Amer. Math. Soc. 11 (1984), 143–146.MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    Ball, J.M. and Mizel, V.J.: One-dimensional variational problems whose minimizers do not satisfy the Euler-Lagrange equation, Arch. Rational Mech. Anal. 90 (1985), 325–388.MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    Ball, J.M. and Nadirashvili, N.S.: Universal singular set for one dimensional variational problems, Preprint, Heriot-Watt University, Edinburgh, 1994.Google Scholar
  9. 9.
    Belloni, M.: Tesi di Dottorato (in preparation).Google Scholar
  10. 10.
    Belloni, M.: Interpretation of the Lavrentiev phenomenon by relaxation : the higher order case, Trans. Amer. Math. Soc., to appear.Google Scholar
  11. 11.
    Bethuel, F., Brezis, H. and Coron, J.M.: Relaxed energies for harmonic maps, Proceedings of Variational Methods, Paris, June 1988, Birkhäuser, Boston, 1990, pp.37–52.Google Scholar
  12. 12.
    Buttazzo, G.: Sernicontinuity, Relaxation and Integral Representation in the Calculus of Variations, Pitman Res. Notes Math. Ser. 207, Longman, Harlow, 1989.Google Scholar
  13. 13.
    Buttazzo, G.: The Lavrentiev phenomenon for variational problems, Proceedings of “Nonlinear Analysis — Calculus of Variations”, Perugia, 9–12 May 1993, to appear.Google Scholar
  14. 14.
    Buttazzo, G. and Mizel, V.J.: Interpretation of the Lavrentiev phenomenon by relaxation, J. Funct. Anal. 110 (1992), 434–460.MathSciNetzbMATHCrossRefGoogle Scholar
  15. 15.
    Buttazzo, G. and Mizel, V.J.: On a Gap Phenomenon for Isoperimetrically Constrained Variational Problems, Preprint, Dipartimento di Matematica Università di Pisa, Pisa, 1994.Google Scholar
  16. 16.
    Cesari, L.: Optirnization- Theory and Applications, Springer-Verlag, Berlin, 1983.Google Scholar
  17. 17.
    Cesari, L. and Angell, T.S.: On the Lavrentiev phenomenon, Calcolo 22 (1985), 17–29.MathSciNetzbMATHCrossRefGoogle Scholar
  18. 18.
    Cheng, C.W.: The Lavrentiev Phenomenon and Its Applications in Nonlinear Elasticity, Ph.D. Thesis, Carnegie Mellon University, Pittsburgh, 1993.Google Scholar
  19. 19.
    Cheng, C.W. and Mizel, V.J.: On the Lavrentiev phenomenon for autonomous second order integrands, Arch. Rational Mech. Anal. 126 (1994), 21–34.MathSciNetzbMATHCrossRefGoogle Scholar
  20. 20.
    Chiadò Piat, V. and Serra Cassano, F.: Some remarks about the density of smooth functions in weighted Sobolev spaces, Preprint, Dipartimento di Matematica Università di Trento, Trento, 1993.Google Scholar
  21. 21.
    Clarke, F.H. and Vinter, R.B.: Regularity properties of solutions to the basic problem in the calculus of variations, Trans. Amer. Math. Soc. 291 (1985), 73–98.MathSciNetCrossRefGoogle Scholar
  22. 22.
    Corbo Esposito, A. and De Arcangelis, R.: Comparison results for some types of relaxation of variational integral functionals, Ann. Mat. Pura Appl. 164 (1994), 155–193.CrossRefGoogle Scholar
  23. 23.
    Davie, A.M.: Singular minimizers in the calculus of variations in one dimension, Arch. Rational Mech. Anal. 101 (1988), 161–177.MathSciNetzbMATHCrossRefGoogle Scholar
  24. 24.
    De Arcangelis, R.: Some remarks on the identity between a variational integral and its relaxed functional, Ann. Univ. Ferrara 35 (1989), 135–145.zbMATHGoogle Scholar
  25. 25.
    De Arcangelis, R.: The Lavrentieff phenomenon for quadratic functionals, Preprint, Dipartimento di Matematica Università di Napoli, Napoli, 1993.Google Scholar
  26. 26.
    Giaquinta, M., Modica, G. and Soucek, J.: The Dirichlet energy of mappings with values into the sphere, Manuscripta Math. 65 (1989), 489–507.MathSciNetzbMATHCrossRefGoogle Scholar
  27. 27.
    Heinricher, A.C.: A singular stochastic control problem arising from a deterministic problem with non-Lipschitzian minimizers, Dissertation, Carnegie Mellon Math. Dept., 1986.Google Scholar
  28. 28.
    Heinricher, A.C. and Mizel, V.J.: A stochastic control problem with different value functions for singular and absolutely continuous control, Proceedings 25th IEEE Conference on Decision and Control, Athens 1986, pp.134–139.Google Scholar
  29. 29.
    Heinricher, A.C. and Mizel, V.J.: The Lavrentiev phenomenon for invariant variational problems, Arch. Rational Mech. Anal. 102 (1988), 57–93.MathSciNetzbMATHCrossRefGoogle Scholar
  30. 30.
    Heinricher, A.C. and Mizel, V.J.: A new example of the Lavrentiev phenomenon, SIAM J. Control Optim. 26 (1988), 1490–1503.MathSciNetzbMATHCrossRefGoogle Scholar
  31. 31.
    Kilpelainen, T. and Lindqvist, P.: The Lavrentiev phenomenon and the Dirichlet integral, Proc. Amer. Math. Soc., to appear.Google Scholar
  32. 32.
    Knowles, G.: Finite element approximation to singular minimizers, and applications to cavitation in nonlinear elasticity, Proceedings of Differential Equations and Mathematical Physics, Birmingham 1986, Lecture Notes in Math. 1285, Springer Verlag, Berlin, 1987, pp. 236–247.Google Scholar
  33. 33.
    Lavrentiev, M.: Sur quelques problèmes du calcul des variations, Ann. Mat. Pura Appl. 4 (1926), 107–124.Google Scholar
  34. 34.
    Loewen, P.D.: On the Lavrentiev phenomenon, Canad. Math. Bull. 30 (1987), 102–108.MathSciNetzbMATHCrossRefGoogle Scholar
  35. 35.
    Manià, B.: Sopra un esempio di Lavrentieff, Boll. Un. Mat. Ital. 13 (1934), 146–153.Google Scholar
  36. 36.
    Marcellini, P.: Approximation of quasiconvex functions and lower semicontinuity of multiple integral, Manuscripta Math. 51 (1985), 1–28.MathSciNetzbMATHCrossRefGoogle Scholar
  37. 37.
    Mizel, V.J.: The Lavrentiev phenomenon in both deterministic and stochastic optimization problems, Proceedings of Integral Functionals in Calculus of Variations, Trieste 1985, Suppl. Rend. Circ. Mat. Palermo 15 (1987), 111–130.Google Scholar
  38. 38.
    Percivale, D.: Nonoccurence of the Lavrentiev phenomenon for a class of non coercive integral functionals, Preprint, Dipartimento di Matematica, Università di Genova, Genova, 1994.Google Scholar
  39. 39.
    Sychev, M.A.: On the regularity of solutions of some variational problems, Soviet Math. Dokl. 43 (1991), 292–296.MathSciNetzbMATHGoogle Scholar
  40. 40.
    Sychev, M.A.: On a classical problem of the Calculus of Variations, Soviet Math. Dokl. 44 (1992), 116–120.MathSciNetGoogle Scholar
  41. 41.
    Sychev, M.A.: On the question of regularity of the solutions of variational problems, Russian Acad. Sci. Sb. Math. 75 (1993), 535–556.MathSciNetGoogle Scholar
  42. 42.
    Tonelli, L.: Sur une méthode du calcul des variations, Rend. Circ. Mat. Palermo 39 (1915), 233–264.zbMATHCrossRefGoogle Scholar
  43. 43.
    Tonelli, L.: Sur une question du calcul des variations, Rec. Math. Moscou 33 (1926), 87–98.zbMATHGoogle Scholar
  44. 44.
    Zhikov, V.V: Averaging of Functionals of the Calculus of Variations and Elasticity Theory, Math. USSR Izv. 29 (1987), 33–66.zbMATHCrossRefGoogle Scholar
  45. 45.
    Zolezzi, T.: Well-posedness and the Lavrentiev phenomenon, SIAM J. Control Optim. 30 (1992), 787–799.MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1995

Authors and Affiliations

  • G. Buttazzo
    • 1
  • M. Belloni
    • 1
  1. 1.Dipartimento di MatematicaUniversità di PisaPisaItaly

Personalised recommendations