Skip to main content

Part of the book series: NATO ASI Series ((NSSE,volume 283))

  • 449 Accesses

Abstract

Synchrotron radiation sources can deliver electromagnetic radiation for materials technology in a very broad wavelength range from the infrared to the hard X-rays. Besides the main stream of SR-source development leading to high brilliance storage ring sources for fundamental research, compact high intensity SR-sources have been under development for several years covering the specific needs of several potential industrial applications. Different compact storage rings with superconducting and conventional magnets are already in operation, which demonstrates the conceptual and technical feasibility of these schemes. This opens an economical way to provide SR for materials technology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Kim K.J. and Sessler A., Free-electron lasers. Present status and future prospects, Science, 250, 88 (1990).

    Article  CAS  Google Scholar 

  2. Green K.G., BNL-Report 50522 (1976).

    Google Scholar 

  3. European Synchrotron Radiation (ESRF/Grenoble) Design Report (1987).

    Google Scholar 

  4. BESSY II (BESSY/Berlin) Design Report (1989).

    Google Scholar 

  5. Jaeschke E., Krämer D., Kuske B, Kuske P., Scheer M, Weihreter E. and Wüstefeld G., “Lattice design for the 1.7 GeV Light Source BESSY II”, in Proceedings Conf. Particle Accelerator, Washington (1993).

    Google Scholar 

  6. Egan-Krieger G.v., Einfeld D., Hoberg H.-G., Klotz W.-D., Lehr H., Maier R., Martin M., Mülhaupt G., Richter R., Schulz L. and Weihreter E., Status of BESSY, a 800 MeV storage ring dedicated to synchrotron radiation, IEEE Trans. Nucl. Sci. 30, 3094 (1983).

    Article  CAS  Google Scholar 

  7. Weihreter E., Anders W., Bürkmann K., Derikum K., Egan-Krieger G.v., Hartrott M.v., Holtkamp N., Klotz W.-D., Lehr H., maier R., Martin M., Mülhaupt G., Schiele A., Schulz L. and Westphal T., “COSY — A compact electron storage ring for sunchrotron radiation”, Proceedings Eur. Conf. Particle Accelerator, Rome, vol. 2, p. 1523 (1988).

    Google Scholar 

  8. Spiller E., Eastman D., Feder B., Grobman W. and Gudat W., Application of SR to X-ray lithography, J. Appl. Phys. 47, 5460 (1976).

    Article  Google Scholar 

  9. Becker E.W., Ehrfeld W., Hagmann P., Maner A. and Münchmeier D., Fabrication of microstructures with high aspect ratios and great structural heights by SR lithography, galvanoform ing and plastic moulding (LIGA) process, Microelectronic Eng. 4, 35 (1986).

    Article  CAS  Google Scholar 

  10. Wallrabe U., Bley P., Krevet B., Menz W. and Mohr J., “Theoretical and experimental results of an electrostatic micromotor with large gear ratio fabricated by the LIGA process”, in Proceedings Conf. Microelectronic Mechanical Systems, Travemiinde, Germany (1992).

    Google Scholar 

  11. Nagase M., Akazwa H., Utsumi Y., Urisu T., Oxygen desorption from molybdenum oxide by SR and its surface-cleaning applications, Appl. Phys. Let. 62, 234 (1993).

    Article  CAS  Google Scholar 

  12. Uesugi F. and Nishiyama I., Resistless inverse projection patterning of aluminium by using synchrotron radiation induced suppression of thermal chemical vapor deposition, Appl. Surf. Science 54, 254 (1992).

    Article  Google Scholar 

  13. Li B., Twesten I. and Schwentner N., Photochemical etching of GaAs with Cl2 induced by SR, App. Phys. A57, 457 (1993).

    CAS  Google Scholar 

  14. Sands M., “The physics of electron storage rings — an introduction”, SLAC-PUB-121 (1970).

    Google Scholar 

  15. Teng L., “Minimum emittance lattice for SR storage rings”, Argonne National Laboratory ANL/FNAL-Report LS-17 (1985).

    Google Scholar 

  16. Wiedemann H., An ultra-low emittance mode for PEP using damped wigglers, Nucl. Instr. and Meth. A266, 24 (1988).

    CAS  Google Scholar 

  17. Wüstefeld G., “Minimierung der natürlichen Emittanz im TBA-Lattice”, BESSY TB 108/87 (1987).

    Google Scholar 

  18. Weihreter E., “Compact superconducting SR sources”, CERN 90-03, p. 427 (1990).

    Google Scholar 

  19. Madden R.P., A status report on the SURF II synchrotron radiation facility at NBS, Nucl. Instr. and Meth. A172, 1 (1980).

    Article  Google Scholar 

  20. Trinks U., Nolden F. and Jahnke A., The table-top SR source ‘Klein ERNA’, Nucl. Instr. and Meth. A200, 475 (1982).

    Google Scholar 

  21. Takayama T., Compact superconducting SR ring for X-ray lithography, Nucl. Instr. and Meth. B24/25, 420 (1987).

    Google Scholar 

  22. Klotz W.-D., Derikum K., Egan-Krieger G.v., Fleßner H.-H., Hoberg H.-G., Lehr H., Maier R., Martin M., Mülhaupt G., Richter R., Schiele A., Schulz L., Weihreter E. and Westphal T., “The use of superconductivity in compact storage rings”, Proceedings 11th Intern. Conf. Cryogenics Engineering, Berlin (1986).

    Google Scholar 

  23. Wilson M.N., Smith A.I., Kempson V.C., Furvis A.L., Townsend M.C., Jorden A.R., Anderson R.I. and Andrews D.E., HELIOS: a compact synchrotron X-ray source, Microcircuit Engineering 89, 225 (1990).

    Article  Google Scholar 

  24. Okuda S., Nakanishi T., Ikegami K., Nakata S., Nakagawa T., Tsukishima C., Maruyama A., Tanaka H., Nakamura S., Kodera I., Yamamoto S., Matsuda T., Fujimura S., Itagaki H., Yamada T. and Iwamoto M., “A high energy electron beam facility for industrial research”, Proceedings IEEE Conf. Particle Accelerators, San Francisco, vol. 5, p. 2694 (1991).

    Google Scholar 

  25. Tomimasu T., Emura K., Tsutsui Y., Minra F. and Takada H., “Development of a superconducting compact storage ring N/J/III for industrial applications”, Proceedings 7th Symposium Accelerators in Science and Technology, Osaka University (1989).

    Google Scholar 

  26. Anastin V.V., Arbuzov V.S., Blinov G.A., Veshcherevich V.G., Vobly P.D., Gorniker E.I., Zinevich N.I., Zinin E.I., Zubkov N.I., Kiselev V.A., Kollerov E.P., Kulipanov G.N., Matveev Yu.G., Medvedko A.S., Mezentsev N.A., Morgunov L.G., Petrov V.M., Repkov V.V., Roenko V.A., Skrinsky A.N., Sukhanov S.V., Tokarev Yu.I. and Trakhtenberg E.M., Project of the compact superconducting storage ring Siberia-SM, Nucl. Instr. and Meth. A282, 386 (1989).

    Google Scholar 

  27. Hosokawa T., Kitayama T., Kaysaka T., Ido S., Uno Y., Shibayama A., Nakata J., Nishimura K. and Nakajima M., NTT superconducting storage ring Super ALIS, Rev. Sci. Instr. 60, 1783 (7/1989).

    Article  CAS  Google Scholar 

  28. Murphy J.B., Blumberg L.N., Bozoki E., Desmond E., Galayda J., Halama H., Heese R., Hsieh H., Kalsi S., Keane J., Kramer S., Mortazavi P., Moser H.O., Rensch M., Rose J., Schuachman J., Sharma S., Singh O., Solomon L., Thomas M. and Wang J.M., “The Brookhaven superconducting X-ray lithography source (SXLS)”, Proceedings 2nd Europ. Conf. Particle Accelerator, Nice, vol. 2, p. 1828 (1990).

    Google Scholar 

  29. Craft B., Findley A., Findley G., Scott J. and Watson F., Status report on the CAMD project, Nucl. Instr. and Meth. B40/41, 379 (1989).

    Google Scholar 

  30. Mandai S., LUNA, compact source of IHI, Synchr. Rad. News 5, 12 (1992).

    Article  Google Scholar 

  31. Shibayama A., Kitayama T., Hayasaka T., Ido S., Uno Y., Hosokawa T., Nakata J., Nishimura K. and Nakajima M., NTT normal conducting accelerating ring, Rev. Sci. Instr. 60, 1779 (1989).

    Article  CAS  Google Scholar 

  32. Tomimasu T., Noguchi T., Sugiyama S., Yamazaki T., Mikado T., Chiwaki M., Saito T., Suzuki R. and Ohgaki H., Development of five compact storage rings TERAS, NIJI-I-IV at ETL, Physica Scripta T31, 137 (1990).

    Article  CAS  Google Scholar 

  33. Nakamura S., Ohno M., Awaji N., Chiba A., Kitano R., Nishizawa H. and Tomimasu T., “Present status of the 1 GeV synchrotron radiation source at SORTEC”, Proceedings 2nd Europ. Conf. Particle Accelerator, Nice, vol. 1, p. 472 (1990).

    Google Scholar 

  34. Korchuganow V.N., “Dedicated SR source in Zelenograd”, Proceedings Int. Symp. Recent Progr. in Synchr. Rad. Res. in USSR, Tsukuba (1991).

    Google Scholar 

  35. Moser H.O., General-purpose compact SR sources, Nucl. Instr. and Meth. B61, 565 (1991).

    CAS  Google Scholar 

  36. Paul Scherer Institute (Switzerland), “Conceptual design of the Swiss synchrotron light source”, PSI report (1993).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Weihreter, E. (1995). Synchrotron Radiation Sources for Materials Technology. In: Misaelides, P. (eds) Application of Particle and Laser Beams in Materials Technology. NATO ASI Series, vol 283. Springer, Dordrecht. https://doi.org/10.1007/978-94-015-8459-3_45

Download citation

  • DOI: https://doi.org/10.1007/978-94-015-8459-3_45

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-4510-2

  • Online ISBN: 978-94-015-8459-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics