Skip to main content

Part of the book series: NATO ASI Series ((NSSE,volume 283))

Abstract

There is a growing use of energetic ion beams for surface modification of materials, where radiation damage effects are playing an important role in determining the final microstructure. The first consequence of irradiation in metals is the production of atomic displacements, resulting in the formation of point defects in excess of equilibrium. Since these are the principal agents for atomic transport in crystals, they enhance the diffusion processes, provided that the temperature is high enough to allow defect mobility. The second consequence of irradiation is the production of numerous replacements of atoms, tending to disorder initially ordered alloys. Therefore, the understanding of ion beam modification of materials requires the knowledge of production and subsequent migration of defects. In this work, the fundamental aspects of point defect production in metals and alloys by ion irradiation are presented and illustrated with typical examples of radiation enhanced diffusion.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Audouard A. and Jousset J., “Low temperature irradiation of FeB amorphous alloys”, in J.I. Takamura, M. Doyama and M. Kiritani (eds.), Point Defects and Defects Interactions in Metals, Yamada Conference V, University of Tokyo Press., p. 825 (1982).

    Google Scholar 

  2. Adda Y., Brebec G., Gupta R.P. and Limoges Y., Point defects and atomic diffusion in metallic glasses, Materials Science Forum, vol. 15–18, p. 349 (1987).

    Article  Google Scholar 

  3. Ehrhart P., Robrock K.H. and Schober H.R., “Basic defects in metals”, in R.A. Johnson and A.N. Orlov (eds.), Physics of Radiation Effects in Crystals, Elsevier, Amsterdam, p. 3 (1986).

    Chapter  Google Scholar 

  4. Jonhson R.A., Empirical potentials and their use in the calculation of energies of point defects in metals, J. Phys. F3, 295 (1973).

    Article  Google Scholar 

  5. Ehrhart P., The configuration of atomic defects as determined from scattering studies, J. of Nucl. Mater. 69-70, 200 (1978).

    Article  CAS  Google Scholar 

  6. Ehrhart P. and Schilling W., Investigation of interstitials in electron irradiated Al by diffuse X-ray scattering experiments, Phys. Rev. B8, 2604 (1973).

    Google Scholar 

  7. Knöll H., Dedek U. and Schilling W., Ferromagnetic after effect due to interstitials in electron irradiated Ni, J. Phys. F4, 1095 (1974).

    Article  Google Scholar 

  8. Bender O. and Ehrhart P., “Frenkel defects in Ni and Ni-Base alloys”, in J.I. Takamura, M. Doyama and M. Kiritani (eds.), Point Defects and Defects Interactions in Metals, Yamada Conference V, University of Tokyo Press., p. 639 (1982).

    Google Scholar 

  9. Urban R. and Ehrhart P., Investigation of Frenkel defects in e-irradiated Cu3Au by diffuse X-ray scattering, Materials Science Forum, vol. 15–18, p. 1251 (1987).

    Article  Google Scholar 

  10. Siegel S., Effect of neutron bombardment on order in the alloy Cu3Au, Phys. Rev. 75, 1823 (1949).

    Article  CAS  Google Scholar 

  11. Jenkins MX. and Wilkens M, Transmission electron microscopy studies of displacement cascades in Cu3Au, Phil. Mag. 34, 1141 (1976).

    Article  CAS  Google Scholar 

  12. Alamo A., de Novion C.H. and Desarmot G., Production and annealing of point defects in electron irradiated CuAu alloys, Rad. Eff. 88, 69 (1986).

    CAS  Google Scholar 

  13. Blythe H.J., Walz F. and Kronmuller H., Magnetic relaxation in electron-irradiated ordered Ni3Fe, Phys. Stat. Sol. A64, 169 (1981).

    Article  Google Scholar 

  14. Caro A., Victoria M. and Averback R.S., Threshold displacement and interstitial atom formation energies in Ni3Al, J. Mater. Res. 5, 1409 (1990).

    Article  CAS  Google Scholar 

  15. Jackson R.A., Leighly H.P. and Edwards D.R., Computer simulation of radiation damage in Fe3Al, Phil. Mag. 25, 1169 (1972).

    Article  CAS  Google Scholar 

  16. Caro J.A. and Pedrazza D.F., The stability of irradiation induced defects in NiAl, Nucl. Instr. and Meth. B59/60, 880 (1991).

    Google Scholar 

  17. Masuda-Jindo K., Electronic theory for vacancies and interstitials in intermetallic compounds, Mat. Sci. Forum 15-18, 1299 (1987).

    Article  CAS  Google Scholar 

  18. Guillot J.P., Rivière J.P. and Beaufort M.F., Etude par diffusion de Huang des auto-interstitiels dans un alliage ordonné Fe-40 Al irradié aux électrons, J. Physique 44, 651 (1983).

    Article  CAS  Google Scholar 

  19. Dederich P.H., Lehman C., Schober H.T., Scholtz A. and Zeller R., Lattice theory of point defects, J. Nucl. Mater. 69/70, 176 (1978).

    Article  Google Scholar 

  20. Schilling W., Self interstitial atoms in metals, J. Nucl. Mater. 69/70, 465 (1978).

    Article  Google Scholar 

  21. Halbwachs M. and Hillairet J., Identification and dynamic characteristics of the defects responsible for the radiation enhacement of atomic mobility in concentrated a-AgZn alloys, Phys. Rev. B18, 4927 (1981).

    Google Scholar 

  22. Rivière J.P. and Grilhé J., “A study of low temperature fission neutron damage in B2 type FeAl ordered alloys”, in M.T. Robinson and F.W. Young (eds.), Proceedings Int. Conf. Fundamental Aspects of Radiation Damage in Metals, Gatlinburg, TN, USA, p. 637 (1975).

    Google Scholar 

  23. Rivière J.P., Dinhut J.F. and Durai J., Defect production and recovery in an electron irradiated Fe-40 at.% Al ordered alloy, Rad. Eff. 77, 778 (1982).

    Google Scholar 

  24. Averback R.S., Thompson L.J. and Merkle K.I., Effect of cascade energy density on isochronal recovery in Ag and Cu, J. Nucl. Mater. 69/70, 714 (1978).

    Article  Google Scholar 

  25. Dunlop A., Lesueur D. and Durai J., Damage production in iron during high-energy ion irradiation: experimental and theoretical determinations, Nucl. Instr. and Meth. B42, 182 (1989).

    CAS  Google Scholar 

  26. Rivière J.P., Dinhut J.F., Paumier E. and Durai J., Defect production efficiency in Fe60Co40 thin films irradiated with swift heavy ions, Nucl. Instr. and Meth. B72, 176 (1992).

    Google Scholar 

  27. Audouard A., Balanzat E., Bouffard S., Jousset J.C., Chamberod A., Dunlop A., Lesueur D., Fuchs G., Spohr R., Vetter J. and Thomé L., Structural modifications of crystalline and amorphous Ni3B irradiated with high energy heavy ions, Nucl. Instr. and Meth. B59/60, 414 (1991).

    Google Scholar 

  28. Barbu A., Dunlop A., Lesueur D. and Averback R.S., Latent tracks do exist in metallic materials, Europhys. Lett. 15, 37 (1991).

    Article  CAS  Google Scholar 

  29. Jung P. and Schilling W., Anisotropy of the threshold energy for the production of Frenkel pairs in Ta, Phys. Rev. B5, 2046 (1972).

    Google Scholar 

  30. Maury F., Biget M., Vajda P. and Lucasson P., Anisotropy of defect creation in electron-irradiated Fe crystals, Phys. Rev. B14, 5303 (1976).

    Google Scholar 

  31. King W.E., Benedek R., Merkle K.L. and Meshii M., “Re-examination of the threshold energy surface in Cu”, in J.I. Takamura, M. Doyama and M. Kiritani (eds.), Point Defects and Defects Interactions in Metals, Yamada Conference V, University of Tokyo Press., p. 789 (1982).

    Google Scholar 

  32. Lucasson P., “The production of Frenkel defects in metals”, in M.T. Robinson and F.W. Young (eds.), Proceedings Int. Conf. Fundamental Aspects of Radiation Damage in Metals, Gatlinburg, TN, USA, p. 42 (1975).

    Google Scholar 

  33. Balanzat E. and Bouffard S., Basic phenomena of the particle-matter irradiation, in A. Dunlop, F. Rullier-Albenque, C. Jaouen, C. Templier, J. Davenas (eds.), Materials Under Irradiation, Trans. Tech. Pub., p. 7 (1992).

    Google Scholar 

  34. Urban K., Saile B., Yoshida N. and Zag W., “The temperature dependence of the displacement threshold energy in FCC and BCC metals”, in M.T. Robinson and F.W. Young (eds.), Proceedings Int. Conf. Fundamental Aspects of Radiation Damage in Metals, Gatlinburg, TN, USA, p. 783 (1975).

    Google Scholar 

  35. Gibson J.B., Goland A.N., Milgram M. and Vineyard G.H., Dynamics of radiation damage, Phys. Rev. 120, 1229 (1960).

    Article  CAS  Google Scholar 

  36. Kirk M.A., Blewitt T.H. and Scott T.L., Irradiation disordering of Ni3Mn by replacement collision sequences, Phys. Rev. B15, 2914 (1977).

    Google Scholar 

  37. Rivière J.P. and Dinhut J.F., Low temperature fission-neutron disordering of FeCo and FeCoX (X = Mn, V, Ti) ordered alloys, J. Nucl. Mater. 118, 333 (1983).

    Article  Google Scholar 

  38. Diaz de la Rubia T., Averback R.S., Hsieh H. and Benedek R., Molecular dynamics simulation of displacement cascades in Cu and Ni: thermal spike behavior, J. Mater. Res. 4, 579 (1989).

    Article  CAS  Google Scholar 

  39. Averback R.S. and Kirk M.A., “Atomic displacement processes in ion-irradiated materials”, in L.E. Rehn, S.T. Picraux and H. Wiedersich (eds.), Surface Alloying by Ion, Electron and Laser Beams, ASM Pub., Metals Park, Ohio, p. 91 (1986).

    Google Scholar 

  40. Dettman K., Leibfred G. and Shroeder K., Spontaneous recombination of Frenkel pairs for electron irradiation, Phys. Stat. Sol. 22, 423 (1967).

    Article  Google Scholar 

  41. Nakagawa M., Mansel W., Boning K., Rosner P. and Vogl G., Spontaneous recombination volumes of Frenkel defects in neutron irradiated non fee metals, Phys. Rev. B19, 742 (1979).

    Google Scholar 

  42. Beeler J.R. Jr, Displacement spikes in cubic metals: I-a Iron, Cu and W, Phys. Rev. 150, 470 (1966).

    Article  CAS  Google Scholar 

  43. Kinchin G.H. and Pease R.S., The displacement of atoms in solids by radiation, Rep. Prog. Phys. 18, 1 (1955).

    Article  Google Scholar 

  44. Sigmund P., A note on integral equations of the Kinchin-Pease type, Rad. Effects 1, 15 (1969).

    Article  Google Scholar 

  45. Averback R.S., Benedek R. and Merkle K.L., Ion irradiation studies of the damage function of Cu and Ag, Phys. Rev. B18, 4156 (1978).

    Google Scholar 

  46. Jaouen C., Rivière J.P., Templier C. and Delafond J., Production de défauts dans des films de Fe: étude en fonction de la densité d’énergie déposée dans les cascades, J. Nucl. Mater. 131, 11 (1985).

    Article  CAS  Google Scholar 

  47. Rehn L.E., Okamoto P.R. and Averback R.S., Relative efficiency of different ions for producing freely migrating defects, Phys. Rev. B30, 3073 (1984).

    Google Scholar 

  48. Guinan W.E. and Kinney J.H., Molecular dynamic calculations of energetic displacement cascades, J. Nucl. Mater. 104, 1319 (1981).

    Article  CAS  Google Scholar 

  49. Seitz F. and Koehler J.S., Displacement of Atoms During Irradiation, Solid State Physics, vol. 2, Academic Press, New York, p. 305 (1956).

    Google Scholar 

  50. Averback R.S., Diaz de la Rubia T., Hsieh H. and Benedek R., Interactions of particles and clusters with solids, Nucl. Instr. and Meth. B59/60, 709 (1991).

    Google Scholar 

  51. Biersack J.P. and Ekstein W., Sputtering studies with the Monte-Carlo program TRIM-SP, Appl. Phys. 34, 73 (1984).

    Google Scholar 

  52. Sigmund P., Scheidler G.P. and Roth G., in Proceedings Int. Conf. Solid State Physics Research with Accelerators, BNL Rep. no 50083, p. 374 (1968).

    Google Scholar 

  53. Sizman R., The effect of radiation upon diffusion in metals, J. Nucl. Mater. 69/70, 386 (1978).

    Article  Google Scholar 

  54. Wiedersich H., “Phase stability and solute segregation during irradiation”, in R.A. Johnson and A.N. Orlov (eds.), Physics of Radiation Effects in Crystals, Elsevier, Amsterdam, p. 225 (1986).

    Chapter  Google Scholar 

  55. Dienes G.J. and Damask A.C., Radiation enhanced diffusion in solids, J. Appl. Phys. 29, 1713 (1958).

    Article  CAS  Google Scholar 

  56. Macht M.P., Muller A., Naudorf V. and Wollenberger H., Ion irradiation induced mass transport of Ni in Ni and Fe20Cr20Ni, Nucl. Instr. and Meth. B16, 148 (1986).

    CAS  Google Scholar 

  57. Bartels A., Study of point defects properties in concentrated alloys with short range ordering methods, Mat. Sci. Forum 15–18, 1183 (1987).

    Article  Google Scholar 

  58. Halbwachs M., “Effets fondamentaux de l’irradiation dans les alliages a AgZn”, Thesis, University of Grenoble (1977).

    Google Scholar 

  59. Yacout A.M., Lam N.Q. and Stubbins J.F., Dynamical behavior of the implant profile during ion implantation at elevated temperatures, Nucl. Instr. and Meth. B59/60, 57 (1991).

    Google Scholar 

  60. Kronmuller H. and Frank W., Unified analysis of diffusion and relaxation processes in amorphous metallic alloys, Rad. Effects 108, 81 (1989).

    Article  Google Scholar 

  61. Averback R.S. and Hahn H., Radiation enhanced diffusion in amorphous Ni-Zr alloys, Phys. Rev. B37, 10383 (1988).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Riviere, JP. (1995). Radiation Induced Point Defects and Diffusion. In: Misaelides, P. (eds) Application of Particle and Laser Beams in Materials Technology. NATO ASI Series, vol 283. Springer, Dordrecht. https://doi.org/10.1007/978-94-015-8459-3_4

Download citation

  • DOI: https://doi.org/10.1007/978-94-015-8459-3_4

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-4510-2

  • Online ISBN: 978-94-015-8459-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics