Skip to main content

Part of the book series: NATO ASI Series ((NSSE,volume 283))

Abstract

This paper deals with the formation of plasma resulting from the interaction between a laser beam and a metal target in an ambient gas. The different steps of the plasma formation are reviewed: initiation with primary electron production, surface material vaporisation and ionisation, breakdown in the ambient gas and plasma propagation. The influence of the laser wavelength, the material characteristics and the ambient gas nature is studied. Three applications of laser-induced plasmas are briefly described: direct nitridation of metal surface, pulsed laser deposition and soft laser material ablation coupled to resonance ionisation mass spectrometry for ultra-trace analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Cheung J. and Horwitz J., Pulsed laser deposition history and laser-target interactions, M.R.S. Bulletin XVII(2), 30 (1992).

    Google Scholar 

  2. von Allmen M., Laser-Beam Interaction with Materials, Springer-Verlag, Berlin (1987); (b) Gower M.C., “Excimer lasers: current and future applications”, in Laser Processing in Manufacturing, Chapman and Hall, London (1993).

    Book  Google Scholar 

  3. Sona A., Laser in industry: metalworking processes and systems, Physica Scripta T23, 288 (1998).

    Article  Google Scholar 

  4. Dubreuil B., Gibert T., Barthe M.F. and Debrun J.L., Laser-SIMS: an application of laser resonant multiphoton ionisation spectroscopy to material analysis, Laser in Engineering 1, 283 (1993).

    Google Scholar 

  5. Riabkina-Fishman M. and Zahari J., Structure and microhardness of laser-hardened 1045 steel, J. Mater. Sci. 23, 1547 (1988).

    Article  CAS  Google Scholar 

  6. Mordike B.L., Laser de Puissance et Traitements des Materiaux, Presses Polytechniques et Universitaires Romandes, Lausanne, p. 176 (1991).

    Google Scholar 

  7. d’Anna E., Leggieri G. and Luches A., Synthesis of thin films of semiconductor and refractory metal nitrides by laser irradiation of solid samples in ambient gases, Thin Solid Films 218, 219 (1992).

    Article  CAS  Google Scholar 

  8. Fogarassy E., Slaoui A., Fuchs C. and Stoquert J.P., Deposition of SiO2 by reactive excimer laser ablation from a SiO target, Appl. Surf. Sci. 46, 195 (1990).

    Article  CAS  Google Scholar 

  9. Boulmer-Leborgne C., Hermann J., Dubreuil B., Brault P., DeGiorgi M.L., Leggieri G., Luches A., Martino M., Perrone A., Mihailescu I.N., Ursu I., Blondiaux G., Debrun J.L., Estrade H. and Rousseau B., Direct carbidation of titanium as a result of multipulse UV laser irradiation of titanium samples in an ambient methane gas, Appl. Surf. Sc. 54, 349 (1992).

    Article  CAS  Google Scholar 

  10. Champeaux C., Damiani D., Girault C., Marchet P., Aubreton J., Mercurio J.P. and Catherinot A., Laser Ablation of Electronic Materials, North-Holland-Elsevier, Amsterdam, p. 141 (1992).

    Google Scholar 

  11. Norton D.P., Lowndes D.H., Zheng X.Y., Zhu S. and Warmack R.J., Scanning tunneling microscopy of pulsed laser deposited YBaCuO epitaxial thin films: Surface microstructure and growth mechanism, Phys. Rev. B44, 9760 (1991).

    Google Scholar 

  12. Strupp P.G., Stair P.C. and Weitz E., Pulsed laser induced electron and positive ion emission from Cu(100) under UHV conditions near the threshold for surface damage, J. Appl. Phys. 69, 3472 (1991).

    Article  CAS  Google Scholar 

  13. (a) Root R.G., “Modeling of post-breakdown phenomena”, in LJ. Radziemski and D.A. Cremers (eds.), Laser Induced Plasmas and Applications, M. Dekker, New York (1989); (b) Weyl G.M., “Physics of laser induced breakdown: an update”, ibid.

    Google Scholar 

  14. Weyl G.M., Pirri A. and Root R., Laser ignition of plasma off aluminium surfaces, A.I.A.A. Journal 19, 460 (1981).

    CAS  Google Scholar 

  15. Vorobev V.S. and Maksimenko S.V., Surface laser plasma accompanying the heating and evaporation of microdefects, Sov. J. Quantum Electron. 18, 1595 (1988).

    Article  Google Scholar 

  16. Hermann J., Boulmer-Leborgne C., Mihailescu I.N. and Dubreuil B., Multistage plasma initiation process by pulsed CO2 laser irradiation of a Ti sample in an ambient gas (He, Ar, N2), J. Appl. Phys. 73, 1091 (1993).

    Article  CAS  Google Scholar 

  17. Geerstsen C., Briand A., Chartier F., Lacour J.L., Mauchien P., Sjostrom S. and Mermet J.M., Comparison between infrared and ultraviolet laser ablation at atmospheric pressure. Implications for solid sampling inductively couple plasma spectrometry, J. Anal. Atom. Spectrom. 9, 17 (1994).

    Article  Google Scholar 

  18. Kelly R. and Dreyfus R.W., On the effect of knudsen layer formation on studies of vaporisation, sputtering and desorption, Surface Science 198, 263 (1988).

    Article  CAS  Google Scholar 

  19. Finke B.R. and Simon G., On the gas kinetics of laser-induced evaporation of metals, J. Phys. D: Appl. Phys. 23, 67 (1990).

    Article  CAS  Google Scholar 

  20. Richter A., Characteristic features of laser-produced plasmas for thin film deposition, Thin Solid Films 188, 275 (1990).

    Article  CAS  Google Scholar 

  21. Hermann J., Boulmer-Leborgne C., Dubreuil B. and Mihailescu I.N.: (a) Investigation by laser-induced fluoresence of surface vaporisation during the pulsed CO2 laser irradiation of a titanium sample in an ambient gas, J. Appl. Phys. 71, 5629 (1992); (b) Influence of irradiation conditions on plasma evolution in laser-surface interaction, ibid. 74, 3071 (1993).

    Article  CAS  Google Scholar 

  22. Boulmer-Leborgne C., Hermann J. and Dubreuil B., Spectroscopic observation of the plasma produced by a CO2 laser beam interacting with titanium target under helium and/or argon atmosphere, Appl. Phys. A55, 340 (1992).

    Google Scholar 

  23. Maher W.E., Hall R.B. and Jonhson R.R., Experimental study of ignition and propagation of laser-suported detonation waves, J. Appl. Phys. 45, 2138 (1974).

    Article  CAS  Google Scholar 

  24. Herziger G., “Physics of laser material processing”, in Proceedings of S.P.I.E Conf. High Power Lasers and their Industrial Applications, 650, pp. 188–194 (1986).

    Article  CAS  Google Scholar 

  25. Chase L.L., Hamza A.V. and Lee H.W.H., “Laser ablation and optical surface damage”, in J.C. Miller and R.F. Haglund (eds.), Laser Ablation, Mechanisms and Applications, Springer-Verlag, Berlin, p. 193 (1991).

    Google Scholar 

  26. Mazumder J., Rockstrh T.J. and Krier H., Spectroscopic studies of plasma during laser gas heating in flowing argon, J. Appl. Phys. 62, 4712 (1987).

    Article  CAS  Google Scholar 

  27. Iida Y., Effects of atmosphere on laser vaporisation and excitation processes of solid samples, Spectrochimica Acta 45B, 1353 (1990).

    CAS  Google Scholar 

  28. Cotell CM. and Grabowski K.S., Novel materials applications of pulsed laser deposition, MRS Bulletin XVII(2), 44 (1992).

    Google Scholar 

  29. Gibert T., Dubreuil B., Barthe M.F. and Debrun J.L., Investigation of laser sputtering of iron at low fluence using resonance ionisation mass spectrometry, J. Appl. Phys. 74, 2504 (1993).

    Article  Google Scholar 

  30. Wei P.S.P., A spectroscopic study on the evaporation of aluminium as irradiated by a long pulse Nd laser, J. Appl. Phys. 48, 4196 (1977).

    Article  CAS  Google Scholar 

  31. Measures R.M., Drewel N. and Kwong H.S., Atomic lifetimes measurements obtained by the use of laser ablation and selective excitation spectroscopy, Phys. Rev. A16, 1093 (1977).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Boulmer-Leborgne, C. (1995). Laser-Material Interaction. Plasma Formation and Applications. In: Misaelides, P. (eds) Application of Particle and Laser Beams in Materials Technology. NATO ASI Series, vol 283. Springer, Dordrecht. https://doi.org/10.1007/978-94-015-8459-3_14

Download citation

  • DOI: https://doi.org/10.1007/978-94-015-8459-3_14

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-4510-2

  • Online ISBN: 978-94-015-8459-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics