Skip to main content

Ergodic Theory of Differentiable Dynamical Systems

  • Chapter
Real and Complex Dynamical Systems

Part of the book series: NATO ASI Series ((ASIC,volume 464))

Abstract

These notes are about the dynamics of systems with hyperbolic properties. The setting for the first half consists of a pair (f, µ), where f is a diffeomorphism of a Riemannian manifold and µ is an f-invariant Borel probability measure. After a brief review of abstract ergodic theory, Lyapunov exponents are introduced, and families of stable and unstable manifolds are constructed. Some relations between metric entropy, Lyapunov exponents and Hausdorff dimension are discussed. In the second half we address the following question: given a differentiable mapping, what are its natural invariant measures? We examine the relationship between the expanding properties of a map and its invariant measures in the Lebesgue measure class. These ideas are then applied to the construction of Sinai-Ruelle-Bowen measures for Axiom A attractors. The nonuniform case is discussed briefly, but its details are beyond the scope of these notes.

The author is partially supported by the National Science Foundation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Azencott, R., Diffeomorphismes d’Anosov et schemas de Bernoulli, CRAS Paris A270 (1970) 1105–1107.

    MathSciNet  MATH  Google Scholar 

  2. Ballman, W. and Brin, M., On the ergodicity of geodesic flows, Ergod. Th. and Dyn. Sys. 2 (1982) 311–315. (Note: gap in proof of ergodicity).

    Google Scholar 

  3. Benedicks, M. and Carleson, L., On iterations of 1-axe on (-1,1), Annals of Math. 122 (1985) 1–25.

    Article  MathSciNet  MATH  Google Scholar 

  4. Benedicks, M. and Carleson, L., The dynamics of the Henon map, Ann. Math. 133 (1991) 73–169.

    Article  MathSciNet  MATH  Google Scholar 

  5. Benedicks, M. and Young, L.-S., SBR measures for certain Henon maps, Inventiones Math. 112 (1993) 541–576.

    Article  MathSciNet  MATH  Google Scholar 

  6. Billingsley, P., Ergodic theory and information, John Wiley and Sons, Inc., New York-London-Sydney (1965).

    Google Scholar 

  7. Bowen, R., Equilibrium states and the ergodic theory of Anosov diffeomorphisms, Springer Lectures Notes in Math. 470 (1975).

    Google Scholar 

  8. Bowan, R. and Ruelle, D., The ergodic theory of Axiom A flows, Invent. Math. 29 (1975) 181–202.

    Google Scholar 

  9. Brin, M. and Katok, A., On local entropy, Geometric Dynamics, Springer Lecture Notes 1007 (1983) 30–38.

    MathSciNet  Google Scholar 

  10. Burns, K. and Katok, A., Infinitesimal Lyapunov functions, invariant cone families, and stochastic properties of smooth dynamical systems, to appear in Erg. Th. and Dynam. Sys.

    Google Scholar 

  11. P. Collet and J. P. Eckmann, Positive Lyapunov exponents and absolutely continuity, Ergod. Th. and Dynam. Syst. 3 (1983), 13–46.

    MathSciNet  MATH  Google Scholar 

  12. Eckmann, J.-P. and Ruelle, D., Ergodic theory of chaos and strange attractors, Rev. Mod. Phys. 57 (1985) 617–656.

    Article  MathSciNet  Google Scholar 

  13. Fathi, A., Herman, M. and Yoccoz, J.-C., A proof of Pesin’s stable manifold theorem, Springer Lecture Notes in Math. 1007 (1983) 117–215.

    MathSciNet  Google Scholar 

  14. Falconer, K., Fractal Geometry, mathematical foundations and applications, Wiley (1990).

    Google Scholar 

  15. Furstenberg, H., Noncommuting random products, Trans. AMS 108 (1963) 377–428.

    Article  MathSciNet  MATH  Google Scholar 

  16. M. de Guzmán, Differentiation of Integrals in R“, Springer Lecture Notes in Math. 481 (1975), 2.

    Google Scholar 

  17. Goldsheid, I. and Margulis, G., Lyapunov indices of a product of random matrices, Russ. Math. Surveys 44: 5 (1989) 11–71.

    Article  MathSciNet  Google Scholar 

  18. Guivarc’h, Y. and Raugi, A., Frontière de Furstenberg, propriétés de contraction et theorèmes de convergence, Z. Wahrscheinlichkeitstheorie verw. Geb. 69 (1985), 187–242.

    Article  MathSciNet  MATH  Google Scholar 

  19. M. W. Hirsch and C. Pugh, Stable manifolds and hyperbolic sets, Proc. Sym. in Pure Math. 14, A.M.S., Providence, RI (1970).

    Google Scholar 

  20. Hu, H. and Young, L.-S., Nonexistence of SBR measures for some systems that are “almost Anosov”, to appear in Erg. Th. and Dyn. Sys.

    Google Scholar 

  21. Jakobson, M., Absolutely continuous invariant measures for one-parameter families of onedimensional maps, Commun. Math. Phys. 81 (1981) 39–88.

    Article  MathSciNet  MATH  Google Scholar 

  22. Katok, A., Lyapunov exponents, entropy and periodic orbits for diffeomorphisms, Publ. Math. IHES 51 (1980) 137–174.

    MATH  Google Scholar 

  23. Katok, A., and Strelcyn, J.M., Invariant manifolds, entropy and billiards; smooth maps with singularities, Springer Lecture Notes in Math. 1222 (1986).

    Google Scholar 

  24. Krzyzewski, K. and Szlenk, W., On invariant measures for expanding differentiable mappings, Studia Math. 33 (1969), 83–92.

    MathSciNet  MATH  Google Scholar 

  25. Kingman, C., Subadditive processes, Springer Lecture Notes in Math. 539 (1976).

    Google Scholar 

  26. Ledrappier, F., Preprietes ergodiques des mesures de Sinai, Publ. Math. IHES 59 (1984) 163–188.

    MathSciNet  MATH  Google Scholar 

  27. Ledrappier, F., Quelques propriétés des exposants caractéristiques, Springer Lecture Notes in Math 1097 (1984), 305–396.

    Article  MathSciNet  Google Scholar 

  28. Ledrappier, F., Dimension of invariant measures, Teubner-Texte zur Math. 94 (1987) 116–124.

    MathSciNet  Google Scholar 

  29. Ledrappier, F., and Strelcyn, J.-M., A proof of the estimation from below in Pesin entropy formula, Ergod. Th. and Dynam. Sys. 2 (1982) 203–219.

    Article  MathSciNet  MATH  Google Scholar 

  30. Ledrappier, F., and Young, L.-S., The metric entropy of diffeomorphisms, Annals of Math. 122 (1985) 509–574.

    Article  MathSciNet  MATH  Google Scholar 

  31. Mané, R., A proof of Pesin’s formula, Ergod. Th. and Dynam. Sys. 1 (1981) 95–102.

    Article  MATH  Google Scholar 

  32. Mané, R., On the dimension of compact invariant sets of certain non-linear maps, Springer Lecture Notes in Math. 898 (1981) 230–241 (see erratum).

    Google Scholar 

  33. Mané, R., Ergodic Theory and Differentiable Dynamics,Springer-Verlag (1987).

    Google Scholar 

  34. M. Misiurewicz, Absolutely continuous measures for certain maps of the interval, Publ. Math. IHES 53 (1981), 17–51.

    MathSciNet  MATH  Google Scholar 

  35. Mora, L. and Viana, M., Abundance of strange attractors, to appear in Acta Math.

    Google Scholar 

  36. Newhouse, S., Lectures on Dynamical Systems, Progress in Math. 8, Birkhauser (1980) 1–114.

    Google Scholar 

  37. Nowicki, T. and van Strien, S., Absolutely continuous invariant measures under a summability condition, Invent. Math 105 (1991) 123–136.

    MATH  Google Scholar 

  38. Oseledec, V. I., A multiplicative ergodic theorem: Liapunov characteristic numbers for dynamical systems, Trans. Moscow Math. Soc. 19 (1968) 197–231.

    MathSciNet  Google Scholar 

  39. Ornstein, D. and Weiss, B., Geodesic flows are Bernoullian, Israel J. Math 14 (1973), 184–198.

    MathSciNet  MATH  Google Scholar 

  40. Pesin, Ya. B., Families if invariant manifolds corresponding to non-zero characteristic ex- ponents, Math. of the USSR, Izvestjia 10 (1978) 1261–1305.

    Google Scholar 

  41. Pesin, Ya. B., Characteristic Lyapunov exponents and smooth ergodic theory, Russ. Math. Surveys 32 (1977) 55–114.

    Article  MathSciNet  Google Scholar 

  42. Pesin, Ya. B., and Sinai, Ya. G., Gibbs measures for partially hyperbolic attractors, Ergod. Th. and Dynam. Sys. 2 (1982) 417–438.

    Article  MathSciNet  MATH  Google Scholar 

  43. Pugh, C. and Shub, M., Ergodicity of Anosov actions, Inventiones Math. 15 (1972) 1–23.

    Article  MathSciNet  MATH  Google Scholar 

  44. Pugh, C. and Shub, M., Ergodic attractors, Trans. AMS, Vol. 312, No. 1 (1989) 1–54.

    Article  MathSciNet  MATH  Google Scholar 

  45. Rees, M., Positive measure sets of ergodic rational maps, Ann. Scient. Ec. Norm. Sup. 40 série 19 (1986) 93–109.

    MathSciNet  Google Scholar 

  46. Robinson, C. and Young, L.-S., Nonabsolutely continuous foliations for an Anosov diffeomorphism, Invent. Math. 61 (1980) 159–176.

    MathSciNet  MATH  Google Scholar 

  47. V. A. Rohlin, On the fundamental ideas of measure theory, A.M.S. Transl. (1) 10 (1962) 1–52.

    Google Scholar 

  48. V. A. Rohlin, Lectures on the theory of entropy of transformations with invariant measures, Russ. Math. Surveys 22: 5 (1967) 1–54.

    Article  MathSciNet  Google Scholar 

  49. Ruelle, D., A measure associated with Axiom A attractors, Amer. J. Math. 98 (1976) 619–654.

    Article  MathSciNet  MATH  Google Scholar 

  50. Ruelle, D., Applications conservant une measure absolument continue par raport a dx sur [0, 1], Commun. Math. Phys. 55 (1987) (47–52).

    Google Scholar 

  51. Ruelle, D., An inequality of the entropy of differentiable maps, Bol. Sc. Bra. Mat. 9 (1978) 83–87.

    Article  MathSciNet  MATH  Google Scholar 

  52. Ruelle, D., Ergodic theory of differentiable systems, Publ. Math. IHES 50 (1979) 27–58.

    MathSciNet  MATH  Google Scholar 

  53. Ruelle, D., The thermodynamics formalism for expanding maps, Commun. Math. Phys., Vol. 125 (1989) 239–262.

    Article  MathSciNet  MATH  Google Scholar 

  54. Rychlik, M., A proof of Jakobson’s theorem, Ergod. Th. and Dyn. Sys. 8 (1988) 93–109.

    MathSciNet  MATH  Google Scholar 

  55. Shub, M., Global Stability of Dynamical Systems, Springer (1987).

    Google Scholar 

  56. Sinai, Ya. G., Markov partitions and C-diffeomorphisms, Func. Anal. and its Appl. 2 (1968) 64–89.

    Google Scholar 

  57. Sinai, Ya. G., Dynamical systems with elastic reflections: ergodic properties of dispersing bil- liards, Russ. Math. Surveys 25, No. 2 (1970) 137–189.

    Article  MathSciNet  MATH  Google Scholar 

  58. Sinai, Ya. G., Gibbs measures in ergodic theory, Russ. Math. Surveys 27 No. 4 (1972) 21–69.

    Article  Google Scholar 

  59. Sinai, Ya. G., Introduction to Ergodic Theory, Princeton Univ. Press (1976).

    Google Scholar 

  60. Sinai, Ya. G., (ed.), Dynamicals systems II, Encyclopaedia of Math. Sc. Vol. 2, Springer-Verlag (1989).

    Google Scholar 

  61. Smale, S., Differentiable dynamical systems, Bull. Amer. Math. Soc. 73 (1967) 747–817.

    Article  MathSciNet  MATH  Google Scholar 

  62. Tsujii, M., Positive Lyapunov exponents in families of 1-dimensional systems, Invent. Math. 11 (1993) 113–117.

    MathSciNet  Google Scholar 

  63. Thieullen, P., Tresser, C. and Young, L.-S., Positive Lyapunov exponent for generic 1-parameter families of unimodal maps, C.R. Acad. Sci. Paris, t. 315 Série I (1992) 69–72; longer version to appear in J. d’Analyse.

    Google Scholar 

  64. Walters, P., An introduction to Ergodic Theory, Grad. Texts in Math., Springer-Verlag (1981).

    Google Scholar 

  65. Wojtkowski, M., Invariant families of cones and Lyapunov exponents, Erg. Th. and Dyn. Sys. 5 (1985) 145–161.

    MathSciNet  MATH  Google Scholar 

  66. Wojtkowski, M., Principles for the design of billiards with nonvanishing Lyapunov exponents, Commun. Math. Phys. 105 (1986) 391–414.

    Article  MathSciNet  MATH  Google Scholar 

  67. Wojtkowski, M., Systems of classical interacting particles with nonvanishing Lyapunov exponents, Springer Lecture Notes in Math 1486 (1991).

    Google Scholar 

  68. Young, L.-S., Dimension, entropy and Lyapunov exponents, Ergod. Th. and Dynam. Sys. 2 (1982) 109–129.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Young, LS. (1995). Ergodic Theory of Differentiable Dynamical Systems. In: Branner, B., Hjorth, P. (eds) Real and Complex Dynamical Systems. NATO ASI Series, vol 464. Springer, Dordrecht. https://doi.org/10.1007/978-94-015-8439-5_12

Download citation

  • DOI: https://doi.org/10.1007/978-94-015-8439-5_12

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-4565-2

  • Online ISBN: 978-94-015-8439-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics