Skip to main content

Gis Technology in Mapping Landslide Hazard

  • Chapter

Part of the book series: Advances in Natural and Technological Hazards Research ((NTHR,volume 5))

Abstract

In the recent years, the ever-increasing diffusion of GIS technology has facilitated the application of quantitative techniques in landslide hazard assessment. Today a wider spectrum of instability causal factors, mainly morphological and geological in nature, can be cost-effectively acquired, stored and analysed in digital form. In particular, by processing elevation data and its derivatives new morphometric parameters can be readily generated over wide regions, and used as predictors of landslide occurrence. Despite the potential of such technological advancements, landslide hazard mapping remains a major, largely unsolved task. The identification and mapping of past and present landslide bodies, which constitute fundamental steps for predicting future slope-failures, remain highly subjective. Likewise, many basic instability determinants cannot be acquired and mapped with adequate accuracy. Most of the current methods for manipulating instability factors and evaluating hazard levels remain error-prone or questionable.

The experience gained from the application of multivariate models in small drainage basins, located in southern and central Italy, indicates that the type of terrain-unit selected, namely: grid-cell, unique-condition unit and slope-unit, exerts a relevant influence on the reliability and feasibility of the hazard model developed. Models, based on different types of terrain-units or statistical approaches, yield responses that may be statistically comparable but dissimilar in terms of applicability. In addition, when different landslide types occur over a region, each type requires the development of a specific model.

Among the different techniques traditionally applied, multivariate approaches, although with limitations, are the most feasible and cost-effective for evaluating the landslide hazard on a regional scale. This is true if GIS techniques are fully and carefully exploited for data acquisition, processing and analysis.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Agterberg F.P., 1974. Geomathematics. Elsevier, Amsterdam, 596 pp.

    Google Scholar 

  • Antonini G., Cardinali M., Guzzetti F., Reichenbach P., and Sorrentino A., 1993. Carta Inventario dei Movimenti Franosi delia Regione Marche ed Aree Limitrofe. GNDCI Pub. No. 580, Map at 1:100,000 scale.

    Google Scholar 

  • Aronoff S., 1989. Geographic Information Systems: a management perspective. WDL Publications, Ottawa, 294 pp.

    Google Scholar 

  • Band L.E., 1986. Topographic partition of watersheds with digital elevation models. Water Resour. Res., v. 22, 15–24.

    Article  Google Scholar 

  • Barchi M., Cardinali M., Guzzetti F., and Lemmi. M., 1993. Relazioni fra movimenti di versante e fenomeni tettonici nell’area del M. Coscerno-M. di Civitella, Val Nerina (Umbria). Boll. Soc. Geol. It., v. 112, 83–111, (in Italian).

    Google Scholar 

  • Bernknopf R.L., Campbell R.H., Brookshire D.S., and Shapiro CD., 1988. A probabilistic approach to landslide hazard mapping in Cincinnati, Ohio, with applications for economic evaluation. Bull. Ass. Eng. Geol., v. 25:1, 39–56.

    Google Scholar 

  • Bitelli G., Carrara A., de Torres Curth M.S., and Folloni G., 1993. Topographical database for EFEDA GIS. EFEDA Project, Final Report, Bruxell, 44 pp.

    Google Scholar 

  • Bonham-Carter G.F., Agterberg F.P., and Wrigth D.F., 1990. Statistical pattern integration for mineral exploration. Geol. Surv. Canada, Inter. Rept., Ottawa.

    Google Scholar 

  • Brabb E.E., 1984. Innovative approaches to landslide hazard mapping. Proceed. IV Int. Symp. Landslides, Toronto, v. 1, 307–324.

    Google Scholar 

  • Brabb E.E., 1995. The San Mateo County GIS project for predicting the consequences of hazardous geologic processes. Carrara A., and Guzzetti F., (Editors), Geographical Information Systems in Assessing Natural Hazards, Kluwer Pub., Dordrecht, the Netherlands, 299–334.

    Google Scholar 

  • Brabb E.E., and Harrod B.L., (Editors), 1989. Landslides: extent and economic significance. Balkema, Rotterdam, 385 pp.

    Google Scholar 

  • Burrough P.A., 1986. Principles of geographical information systems for land resources assessment. Clarendon Press, Oxford, 194 pp.

    Google Scholar 

  • Cardinali M., Galli M., Guzzetti F., Reichenbach P., and Borri G., 1994. Relazione fra movimenti di versante e fenomeni tettonici nel bacino del Torrente Carpina (Umbria settentrionale). Geografia Fisica e Geomorfologia, v. 17:1, in press, (in Italian).

    Google Scholar 

  • Carrara A., 1983. Multivariate models for landslide hazard evaluation. Mathematical Geol., v. 15, 403–426.

    Article  Google Scholar 

  • Carrara A., 1988. Drainage and divide networks derived from high-fidelity digital terrain models. In: Chung CF. et al., (Editors), Quantitative analysis of mineral and energy resources, NATO-ASI Series, D. Reidel Pub. Co., Dordrecht, 581–597.

    Chapter  Google Scholar 

  • Carrara A., 1989. Landslide hazard mapping by statistical methods: a “black-box” model approach. Proceed. Int. Workshop Natural Disasters in Europ.-Mediterr. Countries, Perugia, June 27–July 1, 1988, CNR-USNSF, 205-224.

    Google Scholar 

  • Carrara A., 1992. Landslide hazard assessment. Proceed. 1st Simp. Inter. Sensores Remotos y Sistema de Inform. Geogr. para el Studio de Riescos Natur., March 10–12, 1992, Bogota’, 329-355.

    Google Scholar 

  • Carrara A., 1993. Potentials and pitfalls of GIS technology in assessing natural hazards. In: Reichenbach P., Guzzetti F., and Carrara A., (Editors), Abstracts, Proceed. Int. Workshop GIS in Assess. Nat. Hazards, Perugia, Sept. 20–22, 1993, 128-137.

    Google Scholar 

  • Carrara A., Cardinali M., Detti R., Guzzetti F., Pasqui V., and Reichenbach P., 1991. GIS techniques and statistical models in evaluating landslide hazard. Earth Surface Process. and Landforms, v. 16, 427–445.

    Article  Google Scholar 

  • Carrara A., Cardinali M., Guzzetti F., 1992. Uncertainty in assessing landslide hazard and risk. ITC Jour., v. 1992:2, 172–183.

    Google Scholar 

  • Carrara A., Catalano E., Sorriso-Valvo M., Reali C, and Osso I., 1978. Digital terrain analysis for land evaluation. Geol. Appl. ed Idrogeol., v. 13, 69–127.

    Google Scholar 

  • Chung Ch. F., Fabbri A.G., and Sinding-Larsen R., (Editors), 1988. Quantitative analysis of mineral and energy resources. NATO-ASI series, v. 223, Reidel Publ. Co., Dordrecht.

    Google Scholar 

  • Chung Ch. F., Fabbri A.G., and van Westen C.J., 1995. Multivariate regression analysis for landslide hazard zonation. Carrara A., and Guzzetti F., (Editors), Geographical Information Systems in Assessing Natural Hazards, Kluwer Pub., Dordrecht, the Netherlands, 107–133.

    Google Scholar 

  • Crozier M.J., 1984. Field assessment of slope instability. In: Brunsden D., and Prior D.B., (Editors), Slope instability. Wiley, New York, 103–142.

    Google Scholar 

  • Detti R., and Pasqui V., 1995. Vesctor and raster structures in generating drainage-divide networks from digital terrain models. Carrara A., and Guzzetti F., (Editors), Geographical Information Systems in Assessing Natural Hazards, Kluwer Pub., Dordrecht, the Netherlands, 35–55.

    Google Scholar 

  • Dowds J.P., 1961. Mathematical probability as an oil-search tool. World Oil, v. 153:3, 99–106.

    Google Scholar 

  • Fookes P.G., Dale S.G., and Land J.M., 1991. Some observations on a comparative aerial photography interpretation of a landslipped area. Quart. Jour. Eng. Geol., v. 24, 249–265.

    Article  Google Scholar 

  • Guzzetti F., 1993. Landslide Hazard and Risk by GIS-Based Multivariate Models. In: Reichenbach P., Guzzetti F., and Carrara A., (Editors), Abstracts, Proceed. Int. Workshop GIS in Assess. Nat. Hazards, Perugia, Sept. 20-22, 1993, 83-91.

    Google Scholar 

  • Guzzetti F., and Cardinali M., 1990. Landslide Inventory Map of the Umbria Region, Central Italy. IVth ICFL, ALPS 90, Milano, September 12, 1990, 17-28.

    Google Scholar 

  • Guzzetti F., Cardinali M., and Reichenbach P., 1994. The AVI Project: A bibliographical and archive inventory of landslides and floods in Italy. Environ. Manag., v. 18, 623–633.

    Article  Google Scholar 

  • Hansen A., 1984. Landslide hazard analysis. In: Brunsden D., and Prior D.B., (Editors), Slope instability. Wiley, New York, 523–602.

    Google Scholar 

  • Hansen A., and Franks C.A.M., 1991. Characterisation and mapping of earthquake triggered landslides for seismic zonation. Proceed. IV Int. Conf. Seismic Zonation, Stanford, California, August 26–29, 1991, 149-195.

    Google Scholar 

  • Hansen A., Franks C.A.M., Kirk P.A., and Brimicombe A.J., 1995. The application of GIS to landslide hazard assessment in Hong Kong. Carrara A., and Guzzetti F. (Editors), Geographical Information Systems in Assessing Natural Hazards, Kluwer Pub., Dordrecht, the Netherlands, 273-298.

    Google Scholar 

  • Harbaugh J.W., Dovedton J.H., and Davis J.C., 1977. Probability methods in oil exploration. Wiley, New York.

    Google Scholar 

  • Hosmer D.W., and Lemeshow S., 1989. Applied logistic regression. Wiley & Sons, New York, 307 pp.

    Google Scholar 

  • Isaaks E.H., and Srivastava R.H., 1989. An introduction to allied geostatistics. Oxford Univ. Press, New York, 561 pp.

    Google Scholar 

  • Jenson S.K., and Domingue J.O., 1988. Extracting topographic structure from digital elevation data for Geographic Information System analysis. Photogramm. Eng. and Remote Sensing v. 54:11, 1593–1600.

    Google Scholar 

  • Kovar K., and Nachtnebel H.P., (Editors), 1994. Application of Geographic Information Systems in hydrology and water resources management. Proceed. HydroGIS 93, Vienna, April 19–22, IAHS Publ. No. 211., 694 pp.

    Google Scholar 

  • Lammers R.B., and Band L.E., 1990. Automatic object representation of drainage basins. Computers and Geosciences v. 16:6, 787–810.

    Article  Google Scholar 

  • Laurini R., and Thomposon D., 1992. Fundamentals of spatial information systems. Academic Press, San Diego, 680 pp.

    Google Scholar 

  • Mark R.K., and Ellen S.D., 1995. Statistical and simulation models for mapping debris-flow hazard. Carrara A., and Guzzetti F., (Editors), Geographical Information Systems in Assessing Natural Hazards, Kluwer Pub., Dordrecht, the Netherlands, 93–106.

    Google Scholar 

  • Meijerink A.M.J., 1988. Data acquisition and data capture through terrain mapping units. ITC Jour., v. 1988:1,23-44.

    Google Scholar 

  • Morgan B.W., 1968. An introduction to Bayesian statistical decision process. Prentice-Hall, New York, 116 pp.

    Google Scholar 

  • Neuland H., 1976. A prediction model of landslips. CATENA, v. 3, 215–230.

    Article  Google Scholar 

  • Nieto A.S., 1989. Mechanical models and geological observations: closing the prediction gap. Proceed. Int. Workshop Natural Disasters in Europ.-Mediterr. Countries, Perugia, June 27–July 1, 1988, CNR-USNSF, 145-164.

    Google Scholar 

  • Pike R.J., 1988. The geometric signature: quantifying landslide-terrain types from digital elevation models. Mathematical Geol., v. 20:5, 91–511.

    Google Scholar 

  • Radbruch-Hall D.H., and Varnes D.J., 1976. Landslide: cause and effect. Int. Ass. Eng. Geol. Bull., v. 14, 205–216.

    Article  Google Scholar 

  • Raper J., (Editor), 1989. Three dimensional applications in Geographical Information Systems. Taylor and Francis, London, 189 pp.

    Google Scholar 

  • Reger J.P., 1979. Discriminant analysis as possible tool in landslide investigations. Earth Surf. Process, and Landforms, v. 4, 267–273.

    Article  Google Scholar 

  • Reichenbach P., Guzzetti F, and Carrara A., (Editors), 1993. Abstracts. Proceed. Workshop on Geographycal Information Systems in Assessing Natural Hazards, Perugia, 20–22 September 1993. CNR-IRPI, Perugia, 140 pp.

    Google Scholar 

  • Rengers N., Soeters R., Riet P.A.L.M., and van Vlasblom E., 1990. Large-scale engineering geological mapping in the Spanish Pyrenees. 6th Cong. Int. Ass. Eng. Geol., August 6-10, 1990, Amsterdam, 235-243.

    Google Scholar 

  • Rib H.T., and Liang T., 1978. Recognition and identification. In: Schuster R.L., and Krizek R.J., (Editors), Landslides Analysis and Control. Washington Transp. Research Board, Spec. Rept. 176, Nat. Acad. Sci., 34-80.

    Google Scholar 

  • Schuster R.L., and Krizek R.J., (Editors), 1978. Landslides Analysis and Control. Washington Transp. Reseach Board, Spec. Rept., Nat. Acad. Sei., Washington, 234 pp.

    Google Scholar 

  • Skidmore A.K., 1989. A comparison of techniques for calculating gradient and aspect from gridded elevation data. Int. Jour. Geograph. Inf. Systems, v. 3, 323–334.

    Article  Google Scholar 

  • Soeters R., Rengers N., and van Westen C.J., 1991. Remote sensing and geographical information systems as applied to mountain hazard analysis and environmental monitoring. Proceed. 8th Thematic Conf. Geol. Remote Sensing (ERIM), Apr. 29–May 2, 1991, Denver, v. 2, 1389–1402.

    Google Scholar 

  • Speight J.G., 1977. Landform pattern description from aerial photographs. Photogram., v. 32, 161–182.

    Article  Google Scholar 

  • Terlien M.T.J., van Westen C.J., and van Asch Th.W.J., 1995. The use of deterministic models in landslide hazard assessment. Carrara A., and Guzzetti F., (Editors), Geographical Information Systems in Assessing Natural Hazards, Kluwer Pub., Dordrecht, the Netherlands, 57–77.

    Google Scholar 

  • van Westen C.J., 1993. Application of Geographic Information System to landslide hazard zonation. ITC-Publication No. 15, ITC, Enschede, 245 pp.

    Google Scholar 

  • Varnes D.J. and Commission on Landslides and Other Mass-Movements-IAEG, 1984. Landslide hazard zonation: a review of principles and practice. The Unesco Press, Paris.

    Google Scholar 

  • Verstappen H.T., 1983. Applied gomorphology: geomorphological survey for environmental development. Elsevier, Amsterdam.

    Google Scholar 

  • Wang S.Q., and Unwin D.J., 1992. Modelling landslide distribution on loess soils in China: an investigation. Int. Jour. Geograph. Inf. Systems, v. 6, 391–405.

    Article  Google Scholar 

  • Yin K.L., and Yan T.Z., 1988. Statistical prediction model for slope instability of metamorphosed rocks. Proceed. 5th Int. Symp. Landsides, Lausanne, v. 2, 1269–1272.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media New York

About this chapter

Cite this chapter

Carrara, A., Cardinali, M., Guzzetti, F., Reichenbach, P. (1995). Gis Technology in Mapping Landslide Hazard. In: Carrara, A., Guzzetti, F. (eds) Geographical Information Systems in Assessing Natural Hazards. Advances in Natural and Technological Hazards Research, vol 5. Springer, Dordrecht. https://doi.org/10.1007/978-94-015-8404-3_8

Download citation

  • DOI: https://doi.org/10.1007/978-94-015-8404-3_8

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-4561-4

  • Online ISBN: 978-94-015-8404-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics