Skip to main content

Abstract

Based on several layers of spatial map patterns, multivariate regression methods have been developed for the construction of landslide hazard maps. The method proposed in this paper assumes that future landslides can be predicted by the statistical relationships established between the past landslides and the spatial data set of map patterns. The application of multivariate regression techniques for delineating landslide hazard areas runs into two critical problems using GIS (geographic information systems): (i) the need to handle thematic data; and (ii) the sample unit for the observations. To overcome the first problem related to the thematic data, favourability function approaches or dummy variable techniques can be used.

This paper deals with the second problem related to the sample units. In this situation, the unique condition subareas are defined where each subarea contains a unique combination of the map patterns. Weighted least squares techniques are proposed for the zonation of landslide hazard using those unique condition subareas. The traditional pixel-based multivariate regression model becomes a special case of the proposed weighted regression model based on the unique condition subareas. This model can be directly applied to vector-based GIS data without the need of rasterization.

A case study from a region in central Colombia is used to illustrate the methodologies discussed in this paper. To evaluate the results adequately, it was pretended that the time of the study was the year 1960 and that all the spatial data available in 1960 were compiled including the distribution of the past landslides occurred prior to that year. The statistical analyses performed are based on these pre-1960 data about rapid debris avalanches. The prediction was then compared with the distribution of the landslides which occurred during the period 1960–1980.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aronoff S., 1989. Geographic Information Systems: A management perspective. WDL Pub., Ottawa. 294 pp.

    Google Scholar 

  • Carrara A., 1983. Multivariate Models for landslide hazard evaluation. Mathematical Geology, v. 15:3, 403–427.

    Article  Google Scholar 

  • Carrara A., 1988. Landslide hazard mapping by statistical methods. A “black box” approach. The Proceedings of the Workshop on Natural disasters in European Meditteranean Countries, Italy, 205-224.

    Google Scholar 

  • Carrara A., Cardinali M., Detti R., Guzzetti F., Pasqui V., and Reichenbach P., 1991. GIS techniques and statistical models in evaluating landslide hazard. Earth Surface Processes and Landforms, v. 16:5, 427–445.

    Article  Google Scholar 

  • Carrara A., Cardinali M., and Guzzetti F., 1992. Uncertainty in assessing landslide hazard and risk. ITC Journal, v. 2, 172–183.

    Google Scholar 

  • Christensen R., 1990. Log-Linear Models. Springer-Verlag, New York, 408 pp.

    Google Scholar 

  • Chung C.F., 1978. Computer program for the logistic model to estimate the probability of occurrence of discrete events. Geological Survey of Canada Paper 78-11, 23 pp.

    Google Scholar 

  • Chung C.F., 1983, SIMSAG: Integrated computer system for use in Evaluation of mineral and energy resources. Math. Geology, v. 15:1, 47–58.

    Article  Google Scholar 

  • Chung C.F., and Agterberg F.P., 1980. Regression models for estimating mineral resources from geological map data. Math. Geology, v. 12:5, 473–488.

    Article  Google Scholar 

  • Chung C.F., and Fabbri A.G., 1993. The representation of geoscience information for data integration. Nonrenewable Resources, v. 2:2, 122–139.

    Article  Google Scholar 

  • Chung C.F., and Leclerc Y., (in preparation). Quantitative data integration techniques for landslide hazard mapping.

    Google Scholar 

  • Draper N.R., and Smith H., 1981. Applied Regression Analysis. 2nd ed., Wiley, New York, 709 pp.

    Google Scholar 

  • Fournier D’Albe E.M., 1976. Natural disasters. Bulletin Int. Assoc. Engin. Geol., v. 14, 187.

    Google Scholar 

  • Hansen A., 1984. Landslide hazard. In: Brunsden D., and Prior D.B., (Editors), Slope Instability, Wiley, New York, 523–602.

    Google Scholar 

  • Rao C.R., 1973. Linear Statistical Inference and its Applications. 2nd ed., Wiley, New York, 366–374.

    Book  Google Scholar 

  • Roussas G., 1973. A First Course in Mathematical Statistics. Addison-Wesley, Reading, Mass. 506 pp.

    Google Scholar 

  • Schuster R.L., 1994. Socioeconomic significance of landslides. In: Turner A.K., and Schuster R.L., (Editors), Landslides, investigation and mitigation, Transport Research Board Manual. (in press).

    Google Scholar 

  • Searle S.R., 1971. Linear Models. Wiley, New York, 532 pp.

    Google Scholar 

  • van Westen C.J., 1993. Application of Geographic Information Systems to Landslide Hazard Zonation. Ph.D. Thesis, Technical University of Delft, International Institute for Aerospace Surveys and Earth Sciences, Enschede, The Netherlands, ITC Pubblication 15, v. 1, 245 pp.

    Google Scholar 

  • van Westen C.J., van Düren H.M.G., Kruse I., and Terlien M.T.J., 1993. GISSIZ: Training Package for Geographic Information Systems in Slope Instability Zonation. ITC Publication 15, ITC, Enschede, The Netherlands. Volume 1 — Theory, 245 pp., v. 2 — Exercises, 359 pp. with 10 diskettes.

    Google Scholar 

  • Wang S.-Q., and Unwin D.J., 1992. Modeling landslide distribution on loess soils in China: an investigation. International Journal of Geographic Information Systems, v. 6:5, 391–405.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media New York

About this chapter

Cite this chapter

Chung, CJ.F., Fabbri, A.G., Van Westen, C.J. (1995). Multivariate Regression Analysis for Landslide Hazard Zonation. In: Carrara, A., Guzzetti, F. (eds) Geographical Information Systems in Assessing Natural Hazards. Advances in Natural and Technological Hazards Research, vol 5. Springer, Dordrecht. https://doi.org/10.1007/978-94-015-8404-3_7

Download citation

  • DOI: https://doi.org/10.1007/978-94-015-8404-3_7

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-4561-4

  • Online ISBN: 978-94-015-8404-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics