Skip to main content

Determining Paths of Gravity-Driven Slope Processes: The ‘Vector Tree Model’

  • Chapter
Geographical Information Systems in Assessing Natural Hazards

Part of the book series: Advances in Natural and Technological Hazards Research ((NTHR,volume 5))

Abstract

In the context of studies about the sediment supply into mountain torrents a Geographical Information System was used as a tool for the simulation of rapidly moving gravity-driven slope processes. It was found that procedures which use regular polygon-cascading as a ‘trajectory model’, sometimes do not calculate realistic paths for slope processes. The reason for this was found in the predecessor — successor relation these procedures establish between two adjacent polygons (triangles of a TIN or grid-cells). These relations turned out to be not transitive, when they do not take into account, that material transported into the considered polygon from a higher polygon is not always homogeniously distributed over the whole area of the considered polygon. Consequently, a new ‘trajectory model’, the ‘vector tree’ model, was developed and tested. In this model the paths are formed by’ sequences of vectors’.’ sequences of vectors’ are established by linking together vectors drawn parallel to the flow direction of the slope. This model has produced realistic results for the areas evaluated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Altwegg D., 1988. Ein Modell für die Herstellung computersimulierter Lawinengefahrenkarten mit Hilfe digitalisierter Geländeraster. In: Forschungsgesellschaft für vorbeugende Hochwasserbekämpfung, Interpraevent 1988, Tagungspublikation Bd. 5, Klagenfurth, 189-197, (in German).

    Google Scholar 

  • Bozzolo D., and Pamini R., 1982. Modello matematico per lo studio della caduta dei massi. Laboratorio dei Fisica Terrestre — ICTX, Dipartimento della Pubblica Educazione, Lugano-Trevano, 1-80, (in Italian).

    Google Scholar 

  • Bozzolo D., Pamini R., and Hutter K., 1988. Rockfall analysis — a mathematical model and its test with field data. In: Bonnard Ch., (Editor), Landslides, Proceedings of the 5th international symposium on landslides, Balkeema, Rotterdam, 555-560.

    Google Scholar 

  • Descoeudres F., 1990. L’éboulement des Crétaux: Aspects géotechniques et calcul dynamique des chutes de blocs. Mitteilungen der Schweizerischen Gesellschaft für Boden und Felsmechanik 121, 19-25, (in French).

    Google Scholar 

  • Ellen S.D., Mark R.K., Cannon S.H., and Knifong D.L., 1993. Map of debris-flow hazard in the Honolulu district of Oahu, Hawaii. Open-File Report 93-213, U.S. Geological Survey, Menlo Park.

    Google Scholar 

  • ESRI, 1988. TIN-CASCADING: ARC/INFO based draninage model. ESRI Gesellschaft für Umweltforschung und Umweltplanung mbH, Kranzberg, 40 pp.

    Google Scholar 

  • Grunder M., 1984. Ein Beitrag zur Beurteilung von Naturgefahren im Hinblick auf die Erstellung von mittelmassstäbigen Gefahrenhinweiskarten (mit Beispielen aus dem Berner Oberland und der Landschaft Davos). Geographica Bernensia G23, Institute of Geography, University of Berne, 217 pp., (in German).

    Google Scholar 

  • Gründer M., and Kienholz H., 1986. Gefahrenbeurteilung. In: Wildi O., Ewald K., Der Naturraum und dessen Nutzung im alpinen Tourismusgebiet von Davos. Ergebnisse des MAB-Projektes Davos. Swiss Federal Institute of Forestry Research Berichte N. 289, Birmensdorf, 67-85, (in German).

    Google Scholar 

  • Heim A., 1932. Bergsturz und Menschenleben. Fretz und Wasmuth, Zürich, 218 pp., (in German).

    Google Scholar 

  • Jenson S.K., and Domingue J.O., 1988. Extracting Topographic Structure from Digital Elevation Data for Geographic Information System Analysis. Photogrammetric Engineering and Remote Sensing, v. 54:11, 1593–1600.

    Google Scholar 

  • Kienholz H., 1977. Kombinierte geomorphologische Gefahrenkarte 1:10,000 von Grindelwald. Geographica Bernensia G4, Institute of Geography, University of Berne, 204 pp., (in German).

    Google Scholar 

  • Kienholz H., Erismann T., Fiebiger G., and Mani P., 1992. Naturgefahren: Prozesse, kartographische Darstellung und Massnahmen. In: Leser H., (Editor), Berichte zum 48. Dt. Geographentag in Basel. Franz Stein Verlag, Stuttgart, 293-313, (in German).

    Google Scholar 

  • Körner H.J., 1980. Modelle zur Berechnung der Bergsturz-und Lawinenbewegung. In: Forschungsgesellschaft für vorbeugende Hochwasserbekämpfung, Interpraevent 1980: Tagungspublikation Bd. 2, Klagenfurth, 15-56, (in German).

    Google Scholar 

  • Mani P., and Kläy M., 1992. Naturgefahren an der Rigi-Nordlehne, die Beurteilung von Naturgefahren als Grundlage für die waldbauliche Massnahmenplanung. Schweizerische Zeitschrift für Forstwesen No. 2, 131-147, (in German).

    Google Scholar 

  • Salm B., Burkard A., and Gubler H.U., 1990. Berechnung von Fliesslawinen. Eine Anleitung für Praktiker mit Beispielen. Mitteilungen des Eidgenössischen Instituts für Schnee-und Lawinenforschung No. 47, Davos, 37 pp., (in German).

    Google Scholar 

  • Scheidegger A.E., 1975. Physical aspects of natural catastrophes. Elsevier, Amsterdam, 289 pp.

    Google Scholar 

  • Toppe R., 1987. Terrain models — A tool for natural hazard mapping. IAHS Publications No. 162, Wallingford, 629-638.

    Google Scholar 

  • van Dijke J.J., and van Westen, C.J. (1990): Rockfall hazard: a geomorphologic application of neighbourhood analysis with ILWIS. ITC Journal, v. 1, 40–44.

    Google Scholar 

  • Weingartner R, and Kienholz H., 1994. Ueberlegungen zur Sensivität von Wildbachsystemen — Erste Ergebnisse der hydrologisch geomorphologischen Untersuchungen im Spissibach (Leisigen). In: Schweizerische Gesellschaft für Hydrologie, Eidgenossische Forschungsanstalt für Wald, Schnee und Landschaft, Gedenkschrift Hans Keller — Hydrologie kleiner Einzugsgebiete, Beitrage zur Hydrologie der Schweiz No. 35, 120-133, (in German).

    Google Scholar 

  • Zinggeler A., Krummenacher B., and Kienholz H., 1991. Steinschlagsimulation in Gebirgswäldern. Berichte und Forschungen, v. 3, Institute of Geography, University of Fribourg, 61-70, (in German).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media New York

About this chapter

Cite this chapter

Hegg, C., Kienholz, H. (1995). Determining Paths of Gravity-Driven Slope Processes: The ‘Vector Tree Model’. In: Carrara, A., Guzzetti, F. (eds) Geographical Information Systems in Assessing Natural Hazards. Advances in Natural and Technological Hazards Research, vol 5. Springer, Dordrecht. https://doi.org/10.1007/978-94-015-8404-3_5

Download citation

  • DOI: https://doi.org/10.1007/978-94-015-8404-3_5

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-4561-4

  • Online ISBN: 978-94-015-8404-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics