Skip to main content

Progression or regression of coronary atherosclerosis: Assessment with quantitative coronary angiography

  • Chapter
  • 72 Accesses

Part of the book series: Developments in Cardiovascular Medicine ((DICM,volume 145))

Abstract

Recently published serial angiographic studies to assess retardation of progression or regression of coronary artery disease have only focussed on changes of pre-existing lesions or on the development of new lesions [1–9]. The observed changes have been expressed in terms of changes of percent diameter stenosis or absolute measurement of the minimal luminal diameter (mm) of a stenosis. However, progression and possibly regression, of coronary atherosclerosis is a complex process that is not limited to focal areas of the coronary artery tree but that frequently involves the entire arterial wall [10, 11].

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   429.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   549.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Brensike JF, Levy RI, Kelsey SF, et al. Effects of therapy with cholestyramine on progression of coronary arteriosclerosis: results of the NHLBI Type II Coronary Intervention Study. Circulation 1984; 69: 313–24.

    Article  PubMed  CAS  Google Scholar 

  2. Blankenhorn DH, Nessim SA, Johnson RL, Sanmarco ME, Azen SP, Cashin-Hemphill L. Beneficial effects of combined colestipol-niacin therapy on coronary atherosclerosis and coronary venous bypass grafts. J Am Med Assoc 1987; 257: 3233–40.

    Article  CAS  Google Scholar 

  3. Buchwald H, Varco RL, Matts JP, et al. Effect of partial ileal bypass surgery on mortality and morbidity from coronary heart disease in patients with hypercholesterolemia. Report of the Program on the Surgical Control of the Hypercholesterolemia (POSCH). N Engl J Med 1990; 323: 946–55.

    Article  PubMed  CAS  Google Scholar 

  4. Brown G, Albers JJ, Fisher LD, et al. Regression of coronary artery disease as a result of intensive lipid-lowering therapy in men with high levels of apolipoprotein B. N Engl J Med 1990; 323: 1289–98.

    Article  PubMed  CAS  Google Scholar 

  5. Kane JP, Malloy MJ, Ports TA, Philips NR, Diehl JC, Havel RJ. Regression of coronary atherosclerosis during treatment of familial hypercholesterolemia with combined drug regimens. J Am Med Assoc 1990; 264: 3007–12.

    Article  CAS  Google Scholar 

  6. Arntzenius AC, Kromhout D, Barth JD, et al. Diet, lipoproteins, and the progression of coronary atherosclerosis The Leiden Intervention Trial. N Engl J Med 1985; 312: 805–11.

    Article  PubMed  CAS  Google Scholar 

  7. Lichtlen PR, Hugenholtz PG, Rafflenbeul W, Hecker H, Jost S, Deckers JW. Retardation of angiographie progression of coronary artery disease by nifedipine. Results of the International Nifedipine Trial on Antiatheroscierotic Therapy (INTACT). INTACT Group Investigators: Lancet 1990; 335: 1109–13.

    Article  PubMed  CAS  Google Scholar 

  8. Waters D, Lespérance J, Francetich M, et al. A controlled clinical trial to assess the effect of a calcium channel blocker on the progression of coronary atherosclerosis. Circulation 1990; 82: 1940–1953. Comment in: Circulation 1990; 82: 2251–53.

    Google Scholar 

  9. Ornish D, Brown SE, Scherwitz LW, et al. Can lifestyle changes reverse coronary heart disease? The Lifestyle Heart Trial. Lancet 1990; 336: 129–33. Comment in: Lancet 1990; 336: 624–6.

    Google Scholar 

  10. Vlodaver Z, Edwards JE. Pathology of coronary atherosclerosis. Prog Cardiovasc Dis 1971; 14: 256–74.

    Article  PubMed  CAS  Google Scholar 

  11. Marcus ML, Harrison DG, White CW, McPherson DD, Wilson RF, Kerber RE. Assessing the physiologic significance of coronary obstructions in patients: importance of diffuse undetected atherosclerosis. Prog Cardiovasc Dis 1988; 31: 39–56.

    Article  PubMed  CAS  Google Scholar 

  12. de Feyter PJ, Serruys PW, Davies MJ, Lubsen J, Richardson P, Oliver M. Quantitative coronary angiography to measure progression or regression of coronary atherosclerosis: value, limitations and implications for clinical trials. Circulation 1991; 84: 412–23.

    Article  PubMed  Google Scholar 

  13. Harrison DG, White CW, Hiratzka LF, et al. The value of lesion cross-sectional area determined by quantitative coronary angiography in assessing the physiologic significance of proximal left anterior descending coronary arterial stenoses. Circulation 1984; 69: 111–119.

    Google Scholar 

  14. Rosenberg MC, Klein LW, Agarwal JB, Stets G, Hermann GA, Helfant RH. Quantification of absolute luminal diameter by computer-analyzed digital subtraction angiography: an assessment in human coronary arteries. Circulation 1988; 77: 484–90.

    Article  PubMed  CAS  Google Scholar 

  15. Tobis J, Sato D, Nalcioglu O, et al. Correlation of minimum coronary lumen diameter with left ventricular functional impairment induced by atrial pacing. Am J Cardiol 1988; 61: 697–703.

    Article  PubMed  CAS  Google Scholar 

  16. Marcus ML, Armstrong ML, Heistad DD, Eastham CL, Mark AL. Comparison of three methods of evaluating coronary obstructive lesions: postmortem arteriography, pathologic examination and measurement of regional myocardial perfusion during maximal vasodilation. Am J Cardiol 1982; 49: 1699–1706.

    Article  PubMed  CAS  Google Scholar 

  17. Schwartz JN, Kong Y, Hackel DB, Bartel AG. Comparison of angiographic and postmortem finds in patients with coronary artery disease. Am J Cardiol 1975; 36: 174–8.

    Article  PubMed  CAS  Google Scholar 

  18. Hutchins GM, Bulkley GH, Ridolfi RL, Griffith LS, Lohr FT, Piasio MA. Correlation of coronary arteriograms and left ventriculograms with post mortem studies. Circulation 1977; 56: 32–7.

    Article  PubMed  CAS  Google Scholar 

  19. Thomas AC, Davies MJ, Dilly S, Dilly N, Franc F. Potential errors in the estimation of coronary arterial stenosis from clinical arteriography with reference to the shape of the coronary arterial lumen. Br Heart J 1986; 55: 129–39.

    Article  PubMed  CAS  Google Scholar 

  20. Arnett EN, Isner JM, Redwood DR, et al. Coronary artery narrowing in coronary heart disease: comparison of cineangiographic and necropsy findings Ann Intern Med 1979; 91: 350–6.

    CAS  Google Scholar 

  21. Kemp HG, Evans H, Elliott WC, Gorlin R. Diagnostic accuracy of selective coronary cinearteriography. Circulation 1967; 36: 526–33.

    Article  PubMed  CAS  Google Scholar 

  22. Vlodaver Z, Frech R, Van Tassel RA, Edwards JE. Correlation of the antemortem coronary arteriogram and the postmortem specimen. Circulation 1973; 47: 162–9.

    Article  PubMed  CAS  Google Scholar 

  23. Grondin CM, Dyrda I, Pasternac A, Campeau L, Bourassa MG, Lesperance J. Discrepancies between cineangiographic and postmortem findings in patients with coronary artery disease and recent myocardial revascularization. Circulation 1974; 49: 703–8.

    Article  PubMed  CAS  Google Scholar 

  24. Isner JM, Kishel J, Kent KM, Ronan JA Jr, Ross AM, Roberts WC. Accuracy of angiographic determination of left main coronary artery narrowing. Angiographic–histologic correlative analysis in 28 patients. Circulation 1981; 63: 1056–64.

    Article  PubMed  CAS  Google Scholar 

  25. Glagov S, Weisenberg E, Zarins CK, Stankunavicius R, Kolettis GJ. Compensatory enlargement of human atherosclerotic coronary arteries. N Engl J Med 1987; 316: 1371–75.

    Article  PubMed  CAS  Google Scholar 

  26. Zarins CK, Weisenberg E, Kolettis G, Stankunavicius R, Glagov S. Differential enlargement of artery segments in response to enlarging atherosclerotic plaques. J Vasc Surg 1988; 7: 386–94.

    PubMed  CAS  Google Scholar 

  27. Stiel GM, Stiel LS, Schofer J, Donath K, Mathey DG. Impact of compensatory enlargement of atherosclerotic coronary arteries on angiographic assessement of coronary artery disease. Circulation 1989; 80: 1603–9.

    Article  PubMed  CAS  Google Scholar 

  28. McPherson DD, Sirna SJ, Hiratzka LF, et al. Coronary arterial remodeling studied by high-frequency epicardial echocardiography: an early compensatory mechanism in patients with obstructive coronary atherosclerosis. J Am Coll Cardiol 1991; 17: 79–86.

    Article  PubMed  CAS  Google Scholar 

  29. Isner JM, Donaldson RF, Fortin AH, Tischler A, Clarke RH. Attenuation of the media of coronary arteries in advanced atherosclerosis. Am J Cardiol 1986; 58: 937–9.

    Article  PubMed  CAS  Google Scholar 

  30. White CW, Wright CB, Doty DB, et al. Does visual interpretation of the coronary arteriogram predict the physiologic importance of a coronary stenosis? N Engl J Med 1984; 310: 819–24.

    Article  PubMed  CAS  Google Scholar 

  31. Brown BG, Bolson E, Frimer M, Dodge HT. Quantitative coronary arteriography: estimation of dimensions, hemodynamic resistance and atheroma mass of coronary artery lesions using the arteriogram and digital computation. Circulation 1977; 53: 329–37.

    Article  Google Scholar 

  32. Feldman RL, Nichols WM, Pepine CJ, Conti CR. Hemodynamic significance of the length of a coronary arterial narrowing. Am J Cardiol 1978; 41: 865–71.

    Article  PubMed  CAS  Google Scholar 

  33. Klocke FJ. Measurements of coronary blood flow and degree of stenosis: current clinical implications and continuing uncertainties. J Am Coll Cardiol 1983; 1: 31–41.

    Article  PubMed  CAS  Google Scholar 

  34. Gould KL. Identifying and measuring severity of coronary artery stenosis. Quantitative coronary arteriography and positron emission tomography. Circulation 1988; 78: 237–45.

    Article  PubMed  CAS  Google Scholar 

  35. Zijlstra F, van Ommeren J, Reiber JH, Serruys PW. Does quantitative assessment of coronary artery dimensions predict the physiologic significance of a coronary stenosis? Circulation 1987; 75: 1154–61.

    Article  PubMed  CAS  Google Scholar 

  36. McMahon MM, Brown BG, Cukingnan R, et al. Quantitative coronary angiography: measurement of the “critical” stenosis in patients with unstable angina and single-vessel disease without collaterals. Circulation 1979; 60: 106–13.

    Article  PubMed  CAS  Google Scholar 

  37. Kirkeeide RL, Gould KL, Parsel L. Assessment of coronary stenoses by myocardial perfusion imaging during pharmacologic coronary vasodilation VII. Validition of coronary flow reserve as a single integrated functional measure of stenosis severity reflecting all its geometric dimensions. J Am Coll Cardiol 1986; 7: 103–13.

    Article  PubMed  CAS  Google Scholar 

  38. Learoyd BM, Taylor MG. Alterations with age in the viscoelastic properties of human arterial walls. Circ Res 1966; 18: 278–92.

    Article  PubMed  CAS  Google Scholar 

  39. Bader H. Dependence of wall stress in the human thoracic aorta on age and pressure. Circ Res 1967; 20: 354–61.

    Article  PubMed  CAS  Google Scholar 

  40. Roberts CS, Roberts WC. Cross-sectional area of the proximal portions of the three major epicardial coronary arteries in 98 necropsy patients with different coronary events. Relationship to heart weight, age and sex. Circulation 1980; 62: 953–9.

    Article  PubMed  CAS  Google Scholar 

  41. Roach MR. Reversibility of poststenotic dilatation in the femoral arteries of dogs. Circ Res 1970; 27: 985–93.

    Article  PubMed  CAS  Google Scholar 

  42. Roach MR. Changes in arterial distensibility as a cause of poststenotic dilatation. Am J Cardiol 1963; 12: 802–15.

    Article  PubMed  CAS  Google Scholar 

  43. Roberts WC. The coronary arteries and left ventricle in clinically isolated angina pectoris: a necropsy analysis. Circulation 1976; 54: 388–90.

    Article  PubMed  CAS  Google Scholar 

  44. Svindland A. The localization of sudanophilic and fibrous plaques in the main left coronary bifurcation. Atherosclerosis 1983; 48: 139–45.

    Article  PubMed  CAS  Google Scholar 

  45. McPherson DD, Hiratzka LF, Lamberth WC, et al. Delineation of the extent of coronary artherosclerosis by high-frequency epicardial echocardiography. N Engl J Med 1987; 316: 304–9.

    Article  PubMed  CAS  Google Scholar 

  46. Gould KL, Kirkeeide RL, Buchi M. Coronary flow reserve as a physiologic measure of stenosis severity. J Am Coll Cardiol 1990; 15: 459–74.

    Article  PubMed  CAS  Google Scholar 

  47. Vogel RA. The radiographic assessment of coronary blood flow parameters. Circulation 1985; 72: 460–65.

    Article  PubMed  CAS  Google Scholar 

  48. Klocke FJ. Measurements of coronary blood flow reserve: defining pathophysiology versus making decisions about patient care. Circulation 1987; 76: 1183–89.

    Article  PubMed  CAS  Google Scholar 

  49. Hoffman JIE. A critical view of coronary reserve. Circulation 1987; 75: (suppl I) I-6—I-11.

    Google Scholar 

  50. Zijlstra F, den Boer A, Reiber JHC, van Es GA, Lubsen J, Serruys PW. Assessment of immediate and longterm functional results of percutaneous transluminal coronary angioplasty. Circulation 1988; 78: 15–24.

    Article  PubMed  CAS  Google Scholar 

  51. Emanuelsson H, Dohnel M, Lamm C, Tenerz L. Initial experiences with a miniaturized pressure transducer during coronary angioplasty. Cath and Cardiovasc Diagn 1991; 24: 137–43.

    Article  CAS  Google Scholar 

  52. Doucette JW, Corl PD, Payne HM, Flynn AE, Goto M, Segal J. Validation of a Doppler guide wire for assessment of coronary arterial flow. Circulation 1990; 82:1I1: 621 (abstr).

    Google Scholar 

  53. Yock PG, Johnson EL, Linker DT. Intravascular ultrasound: development and clinical potential. Am J Cardiol Imag 1988; 2: 185–93.

    Google Scholar 

  54. Gussenhoven WJ, Essed CE, Lancée CT, Mastik F, Frietman P, van Egmond FC, Reiber JHC, Bosch H, van Urk H, Roelandt J, Born N. Arterial wall characteristics determined by intravascular ultrasound imaging: an in-vitro study. J Am Coll Cardiol 1989; 14: 94–752.

    Article  Google Scholar 

  55. Mallery JA, Tobis JM, Griffith J. Assessment of normal and atherosclerotic arterial wall thickness with an intravascular ultrasound imaging catheter. Am Heart J 1990; 119: 1392–1400.

    Article  PubMed  CAS  Google Scholar 

  56. Coy KM, Maurer G, Siegel RJ. Intravascular ultrasound imaging: a current perspective. J Am Coll Cardiol 1991; 18: 1811–23.

    Article  PubMed  CAS  Google Scholar 

  57. Gussenhoven E, Frietman PAV, The SHK, van Suylen RJ, van Egmond FC, Lancée CT, van Urk H, Roelandt JRTC, Stynen T, Born N. Assessment of medical thinning in atherosclerosis by intravascular ultrasound. Am J Cardiol 1991; 68: 1625–32.

    CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

De Feyter, P.J., Vos, J., Di Mario, C., Serruys, P.W., Roelandt, J.R.T.C. (1994). Progression or regression of coronary atherosclerosis: Assessment with quantitative coronary angiography. In: Serruys, P.W., Foley, D.P., De Feyter, P.J. (eds) Quantitative Coronary Angiography in Clinical Practice. Developments in Cardiovascular Medicine, vol 145. Springer, Dordrecht. https://doi.org/10.1007/978-94-015-8358-9_34

Download citation

  • DOI: https://doi.org/10.1007/978-94-015-8358-9_34

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-4295-8

  • Online ISBN: 978-94-015-8358-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics