Skip to main content

Response of conductance and resistance coronary vessels to scalar concentrations of acetylcholine. Assessment with quantitative angiography and intracoronary Doppler in 29 patients with coronary artery disease

  • Chapter
Quantitative Coronary Angiography in Clinical Practice

Part of the book series: Developments in Cardiovascular Medicine ((DICM,volume 145))

  • 69 Accesses

Abstract

The in vitro observations of Furchgott and Zawadzki [1] and the in vitro and in vivo reports from the group of Moncada [2, 3] have shown that an endothelium-derived-relaxing-factor, identified as nitric oxide [2], modulates vascular tone in response to physiologic and pathologic stimuli (increase in wall shear stress, serotonin, bradykinin, histamine, thrombin, sympathetic stimulation, acetylcholine, endotoxins, etc.). Endothelial damage, leading to a decreased formation or release of nitric oxide from its precursor L-arginine, or reduced penetration due to the presence of subendothelial intimal thickening, are possible explanations of the impairment of endothelium-mediated vasodilatation observed in patients with systemic hypertension [4], hypercholesterolemia, diabetes mellitus [5], atherosclerosis [6].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 429.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 549.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Furchgott RF, Zawadzki JV. The obligatory role of endothelial cells in the relaxation of smooth muscle by acetylcholine. Nature 1980; 288: 373–6.

    Article  PubMed  CAS  Google Scholar 

  2. Palmer RM, Ashton DS, Moncada S. Vascular endothelial cells synthetize nitric oxide from L-arginine. Nature 1988; 333: 664–6.

    Article  PubMed  CAS  Google Scholar 

  3. Vallance P, Collier J, Moncada S. Effects of endothelium-derived nitric oxide on peripheral arteriolar tone in man. Lancet 1989; 2: 997–1000.

    Article  PubMed  CAS  Google Scholar 

  4. Panza JA, Quyyumi AA, Brush JEJR, et al. Abnormal endothelium-dependent vascular relaxation in patients with essential hypertension. N Engl J Med 1990; 323: 22–7.

    Article  PubMed  CAS  Google Scholar 

  5. Johnstone MT, Gallagher SJ, Scales KM, Cusco JA, Lee B, Creager MA. Endothelium-dependent vasodilatation is impaired in patients with insulin-dependent diabetes mellitus (abstr). Circulation 1992; 68: I - 618.

    Google Scholar 

  6. Fostermann U, Mugge A, Alheid U, et al. Selective attenuation of endothelium-mediated vasodilatation in atherosclerotic human coronary arteries. Circ Res 1988; 62: 185–90.

    Article  Google Scholar 

  7. Ludmer PL, Selwyn AP, Shook TL, et al. Paradoxical vasoconstriction induced by acetylcholine in atherosclerotic coronary arteries. N Engl J Med 1986; 315: 1046–51.

    Article  PubMed  CAS  Google Scholar 

  8. Werns SD, Walton JA, Hsia HH. et al. Evidence of endothelial dysfunction in angiographically normal coronary arteries of patients with coronary artery disease. Circulation 1989; 79: 287–91.

    Article  PubMed  CAS  Google Scholar 

  9. Vita JA, Treasure CB, Nabel EG, et al. Coronary vasomotor response to acetylcholine relates to risk factors in coronary artery disease. Circulation 1990; 81: 491–7.

    Article  PubMed  CAS  Google Scholar 

  10. Yasue H, Matsuyama K, Okumura K, et al. Responses of angiographically normal human coronary arteries to intracoronary injection of acetylcholine by age and segment. Circulation 1990; 81: 482–90.

    Article  PubMed  CAS  Google Scholar 

  11. Okumara K, Yasue H, Matsuyama T, et al. A study of coronary hemodynamics during acetylcholine induced coronary spasm in patients with variant angina: endothelium-dependent dilatation in the resistence vessels. J Am Coll Cardiol 1992; 19: 1426–34.

    Article  Google Scholar 

  12. Vrints CJM, Bult H, Hitter E, Herman AG, Snoeck JP. Impaired endothelium-cholinergic coronary vasodilatation in patients with angina and normal coronary arteriograms. J Am Coll Cardiol 1992; 19: 21–31.

    Article  PubMed  CAS  Google Scholar 

  13. Cox DA, Vita JA, Treasure CB, et al. Atherosclerosis impairs flow-mediated dilation of coronary arteries in humans. Circulation 1989; 80: 458–65.

    Article  PubMed  CAS  Google Scholar 

  14. Nabel EG, Selwyn AP, Ganz P. Large arteries in humans are responsive to changing blood flow: an endothelium-dependent mechanism that fails in patients with atherosclerosis. J Am Coll Cardiol 1990; 16: 349–56.

    Article  PubMed  CAS  Google Scholar 

  15. Drexler H, Zeiher AM, Wollschlager H, Meinertz T, Just H, Bonzel T. Flow-dependent coronary artery dilatation in humans. Circulation 1989; 80: 466–74.

    Article  PubMed  CAS  Google Scholar 

  16. Zeiher AM, Drexler H, Wollschlager H, et al. Coronary vasomotion in response to sympathetic stimulation in humans: importance of the functional integrity of the endothelium. J Am Coll Cardiol 1989; 14: 1181–90.

    Article  PubMed  CAS  Google Scholar 

  17. McFadden EP, Clarke JG, Davies GJ, et al. Effect of intracoronary serotonin on coronary vessels in patients with stable angina and in patients with variant angina. N Engl J Med 1991; 342: 648–54.

    Article  Google Scholar 

  18. Zeiher AM, Schachinger V, Weitzel SH, et al. Intracoronary thrombus formation causes focal vasoconstriction of epicardial arteries in patients with coronary artery disease. Circulation 1991; 83: 1519–25.

    Article  PubMed  CAS  Google Scholar 

  19. Yao SK, Ober JC, Willerson JT, et al. Endogenous nitric oxide protects against platelet aggregation and cyclic flow variations in stenosed and endothelium injured arteries. Circulation 1992; 86: 1302–9.

    Article  PubMed  CAS  Google Scholar 

  20. Zeiher AM, Drexler H, Wollschlager H, Just H. Modulation of coronary vasomotor tone in humans. Progressive endothelial dysfunction with different early stages of coronary atherosclerosis. Circulation 1991; 83: 391–401.

    Article  PubMed  CAS  Google Scholar 

  21. Hodgson J, Nair R, Sheehan HM, Reddy KG. Endothelial dysfunction in coronary arteries precedes ultrasonic evidence of atherosclerosis in patients with risk factors (abstr). J Am Coll Cardiol 1992; 19: 323A.

    Google Scholar 

  22. Hodgson JB, Marshall JJ. Direct vasoconstriction and endothelium dependent vasodilation. Circulation 1989; 79: 1043–51.

    Article  PubMed  CAS  Google Scholar 

  23. Zeiher AM, Drexler H, Wollschläger H, Just H. Endothelial dysfunction of the coronary microvasculature is associated with impaired coronary blood flow regulation in patients with early atherosclerosis. Circulation 1991; 84: 1984–92.

    Article  PubMed  CAS  Google Scholar 

  24. Selke FW, Armstrong ML, Harrison DG. Endothelium-dependent vascular relaxation is abnormal in the coronary microcirculation of atherosclerotic primates. Circulation 1990; 81: 1586–93.

    Article  Google Scholar 

  25. Chillian WM, Dellsperger KC, Layne SM, et al. Effects of atherosclerosis on the coronary microcirculation. Am J Physiol 1990; 258: H-529-H-39.

    Google Scholar 

  26. Yamamoto H, Bossalier C, Cartwright J, Henry PD. Videomicroscopic demonstration of defective cholinergic arteriolar vasodilatation in atherosclerotic rabbit. J Clin Invest 1988; 81: 1752–8.

    Article  PubMed  CAS  Google Scholar 

  27. Chesebro JH, Fuster V, Webster MWI. Endothelial injury and coronary vasomotion. J Am Coll Cardiol 1989; 14: 1191–2.

    Article  PubMed  CAS  Google Scholar 

  28. Hibbard MD, Holmes DR. The Tracker catheter: a new vascular access system. Cathet Cardiovasc Diag 1992; 27: 309–16.

    Article  CAS  Google Scholar 

  29. Meester Gt, Bernard N, Zeelenberg C, et al. A computer-system for real-time analysis of cardiac catheterization data. Cathet Cardiovasc Diag 1975; 1: 113–32.

    Article  Google Scholar 

  30. Di Mario C, Roelandt JRTC, de Jaegere P, Linker DT, Oomen J, Serruys PW. Limitations of the zero-crossing detector in the analysis of intracoronary Doppler. A comparison with fast Fourier transform of basal, hyperemic and transstenotic blood flow velocity measurements in patients with coronary artery disease. Cathet Cardiovasc Diag 1993; 28: 56–64.

    Article  Google Scholar 

  31. Doucette JW, Douglas Corl P, Payne HP, et al. Validation of a Doppler guide wire for intravascular measurement of coronary artery flow velocity. Circulation 1992; 85: 1899–911.

    Article  PubMed  CAS  Google Scholar 

  32. Di Mario C, Hermans WRM, Rensing BJ, Serruys PW. Calibration using angiographie catheters as scaling devices. Importance of filming the catheters not filled with contrast medium (letter). Am J Cardiol 1992; 69: 1377–8.

    Article  PubMed  Google Scholar 

  33. Haase J, Di Mario C, Slager CJ, et al. In vivo validation of on-line and off-line geometric coronary measurements using insertion of stenosis phantoms in porcine coronary arteries. Cathet Cardiovasc Diagn 1992; 27: 16–27.

    Article  PubMed  CAS  Google Scholar 

  34. Di Mario C, Haase J, den Boer A, Reiber JHC, Serruys PW. Videodensitometry versus edge detection for the assessment of in vivo intracoronary phantoms. Am Heart J 1992; 124: 1181–9.

    Article  PubMed  Google Scholar 

  35. Reiber JHC, Serruys PW, Koojman CJ, et al. Assessment of short-, medium-, and longterm variations in arterial dimensions from computer-assisted quantitation of coronary cineangiograms. Circulation 1985; 71: 280–8.

    Article  PubMed  CAS  Google Scholar 

  36. Di Mario C, de Feyter PJ, Slager CJ, de Jaegere P, Roelandt JRTC, Serruys PW. Intracoronary blood flow velocity and transstenotic pressure gradient using sensor-tip pressure and Doppler guidewires. Cathet Cardiovasc Diag 1993; 28: 311–19.

    Article  Google Scholar 

  37. Bassenge E, Busse R. Endothelial modulation of coronary tone. Progr Cardiovasc Dis 1988; 30: 349–80.

    Article  CAS  Google Scholar 

  38. Newman CM, Maseri A, Hackett DR, et al. Response of angiographically normal and atherosclerotic left anterior descending coronary artery to acetylcholine. Am J Cardiol 1990; 66: 1070–6.

    Google Scholar 

  39. Busse R, Trogisch G, Bassenge E. The role of endothelium in the control of vascular tone. Basic Res Cardiol 1985; 80: 475–90.

    Article  PubMed  CAS  Google Scholar 

  40. Angus JA, Campbell GR, Cocks TM, et al. Vasodilatation by acetylcholine is endothelium-dependent. A study by sonomicrometry in canine femoral artery in vivo. J Physiol 1983; 344: 209–44.

    PubMed  CAS  Google Scholar 

  41. Vrints C, Bosmans J, Bult H, Herman A, Snoeck J. Close parallelism between the coronary vasomotor responses to acetylcholine and to serotonin (abstr). J Am Coll Cardiol 1992; 19: 323A.

    Google Scholar 

  42. Golino P, Piscione F, Willerson JT, et al. Divergent effects of serotonin on coronary artery dimensions and blood flow in patients with coronary atherosclerosis and coronary patients. N Engl J Med 1991; 324: 641–8.

    Article  PubMed  CAS  Google Scholar 

  43. Hillis DL, Lange RA. Serotonin and acute ischemic heart disease. N Engl J Med 1991; 342: 688–9.

    Article  Google Scholar 

  44. Zijlstra F, Serruys PW, Hugenholtz PG. Papaverine: the ideal coronary vasodilator for investigating coronary flow reserve? A study of timing, magnitude, reproducibility and safety of the coronary hyperemic response after intracoronary papaverine. Cathet Cardiovasc Diag 1989; 12: 298–303.

    Article  Google Scholar 

  45. McPherson DD, Johnson MR, Alvarez NM, et al. Variable morphology of coronary atherosclerosis: characterization of atherosclerotic plaque and residual arterial lumen size and shape by epicardial echocardiography. J Am Coll Cardiol 1992; 19: 593–9.

    Article  PubMed  CAS  Google Scholar 

  46. Nissen SE, Gurley JC, Grines CL, et al. Intravascular ultrasound assessment of lumen size and wall morphology in normal subjects and patients with coronary artery disease. Circulation 1991; 84: 1087–99.

    Article  PubMed  CAS  Google Scholar 

  47. StGoar FG, Pinto F, Alderman EL, Fitzgerald PJ, Stinson EB, Popp RL. Detection of coronary atherosclerosis in young adult hearts using intravascular ultrasound. Circulation 1992; 86: 756–763.

    Article  CAS  Google Scholar 

  48. Glagov S, Weisenberg E, Zarins CK, et al. Compensatory enlargement of human atherosclerotic coronary arteries. N Engl J Med 1986; 316: 1371–5.

    Article  Google Scholar 

  49. Dubois-Rande’ JL, Zelinsky R, Roudot F, et al. Effects of infusion of L-arginine into the left anterior descending coronary artery on acetylcholine-induced vasoconstriction of human atheromatous coronary arteries. Am J Cardiol 1992; 70: 1269–75.

    Article  Google Scholar 

  50. Zijlstra F, Reiber JHC, Serruys PW. Does intracoronary papaverine dilate epicardial coronary arteries? Implications for the assessment of coronary flow reserve. Cathet Cardiovasc Diag 1988; 14: 1–6.

    Article  CAS  Google Scholar 

  51. Mügge A, Heublein B, Kuhn M, Nolte C, Lichtlen PR. Impaired coronary dilator response to substance P and impaired flow-dependent dilator response in heart transplant patients with graft vasculopathy. J Am Coll Cardiol 1993; 21: 163–175.

    Article  PubMed  Google Scholar 

  52. Serruys PW, Di Mario C, Kern M. Intracoronary Doppler. In: Topol E, editor. Textbook of Interventional Cardiology, 2nd Ed. Philadelphia, Saunders, 1993, in press.

    Google Scholar 

  53. Sudhir K, MacGregor JS, Barbant S, Gupta M, Yock PG, Chatterjee K. In vivo demonstration of role for nitric oxide in the regulation of coronary vascular tone by simultaneous intravascular two-dimensional and Doppler ultrasound. J Am Coll Cardiol 1993; 21: 126168.

    Google Scholar 

  54. Klocke FJ. Measurements of coronary flow reserve: defining pathophysiology versus making decisions about patient care. Circulation 1987; 76: 245–253.

    Article  Google Scholar 

  55. Mancini GBJ, Cleary RM, DeBoe SF, et al. Instantaneous hyperemic flow-vs-pressure slope index. Microsphere validation of an alternative to masures of coronary flow reserve. Circulation 1991; 84: 862–71.

    Article  PubMed  CAS  Google Scholar 

  56. Cleary RM, Aron D, Moore NB, DeBoe SF, Mancini GBJ. Tachycardia, contractility and volume loading alter conventional indexes of coronary flow reserve, but not the instantenous hyperemic flow versus pressure slope index. J Am Coll Cardiol 1992; 20: 1261–8.

    Article  PubMed  CAS  Google Scholar 

  57. Serruys PW, Di Mario C, Meneveau N et al. Intracoronary pressure and flow velocity fromsensor-tip guidewires. A new methodological comprehensive approach for the assessment of coronary hemodynamics before and after coronary interventions. Am J Cardiol 1993; 71: 41D - 53D.

    Article  PubMed  CAS  Google Scholar 

  58. Di Mario C, Meneveau N, De Feyter P, Gil R, Serruys PW. Assessment of the pressure-flow velocity relation using an intracoronary Doppler guidewire (abstr). J Am Coll Cardiol 1993; 21: 348A.

    Google Scholar 

  59. Treasure CB, Klein L, Vita JA, Selwyn AP, Ganz P, Alexander RW. Hypertension and left ventricular hypertrophy are associated with impaired endothelium-mediated relaxation in human coronary resistance vessels. Circulation 1993; 87: 86–93.

    Article  PubMed  CAS  Google Scholar 

  60. Verbeuren TJ, Jordaens FH, Zonnekeyn LL, Hove CE, Coene MC, Herman AG. Effect of hypercholesterolemia on vascular reactivity in the rabbit. Circ Res 1986; 58: 552–64.

    Article  PubMed  CAS  Google Scholar 

  61. Takahishi M, Yui Y, Yasumoto H, Aoyama T, Morishita H, Hattori R, Kawai C. Lipoproteins are inhibitors of endothelium-dependent relaxation of rabbit aorta. Am J Physiol 1990; 258: HI—H8.

    Google Scholar 

  62. Drexler H, Zeiher AM, Doster W, Zeh W, Wieland H. Endothelial dysfunction in the coronary circulation in hypercholesterolemia: protective effect of high HDL cholesterol (abstr). Circulation 1992; 86: I - 117.

    Article  Google Scholar 

  63. Lerman A, Burnett JC. Intact and altered endothelium in regulation of vasomotion. Circulation 1992; 86: III-12—III-9.

    Google Scholar 

  64. Chillian WM, Easthman CL, Marcus ML. Microvascular distribution of coronary vascular resistance in beating left ventricle. Am J Physiol 1986; 20: H779 — H88.

    Google Scholar 

  65. Harrison DG, Armstrong ML, Freiman PC, Heistad DD. Restoration of endothelium-dependent relaxation by dietary treatment of atherosclerosis. J Clin Invest 1987; 80: 180811.

    Google Scholar 

  66. Cooke JP, Andon NA, Girerd XJ, Hirsch AT, Creager MA. Arginine restores cholinergic relaxation of hypercholesterolemic rabbit thoracic aorta. Circulation 1991; 83: 1057–62.

    Article  PubMed  CAS  Google Scholar 

  67. Drexler H, Zeiher AM, Meinzer K, Just H. Correction of endothelial dysfunction in coronary microcirculation of hypercholesterolemic patients by L arginine. Lancet 1991; 338: 1546–51.

    Article  PubMed  CAS  Google Scholar 

  68. Auch-Swelk W, Bossaler C, Claus M, Graf K, Schuler S, Fleck E. ACE-inhibitors potentiate endothelium-dependent relaxation to threshold concentrations of bradykinin in coronary arteries (abstr). J Am Coll Cardiol 1992; 19: 190A.

    Google Scholar 

  69. Dohi Y, Criscione L, Pfeiffer K, Luscher TF. Normalization of endothelial dysfunction of hypertensive mesenteric resistance arteries by chronic therapy with benazepril or nifedipine (abstr). J Am Coll Cardiol 1992; 19: 226A.

    Google Scholar 

  70. Williams JK, Adams MR, Herrington DM, Clarkson TB. Short-term administration of estrogen and vascular responses of atherosclerotic coronary arteries. J Am Coll Cardiol 1992; 20: 452–7.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Mario, C.D., Strikwerda, S., Gil, R., De Feyter, P.J., Meneveau, N., Serruys, P.W. (1994). Response of conductance and resistance coronary vessels to scalar concentrations of acetylcholine. Assessment with quantitative angiography and intracoronary Doppler in 29 patients with coronary artery disease. In: Serruys, P.W., Foley, D.P., De Feyter, P.J. (eds) Quantitative Coronary Angiography in Clinical Practice. Developments in Cardiovascular Medicine, vol 145. Springer, Dordrecht. https://doi.org/10.1007/978-94-015-8358-9_19

Download citation

  • DOI: https://doi.org/10.1007/978-94-015-8358-9_19

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-4295-8

  • Online ISBN: 978-94-015-8358-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics