Skip to main content

Assessment of coronary stenosis severity from simultaneous measurement of transstenotic pressure gradient and flow. A comparison with quantitative coronary angiography

  • Chapter
Quantitative Coronary Angiography in Clinical Practice

Abstract

Visual interpretation of the coronary angiogram is the method routinely used to assess the severity of a coronary stenosis and to plan, monitor and judge the results of coronary interventions. Quantitative arteriography allows accurate and reproducible measurements of absolute and relative vascular dimensions but, despite the progressive refinements of computer-assisted analysis in the last years, eccentricity, diffuse atherosclerotic involvement and vessel tortuosity remain major obstacles to a correct assessment. In addition, following interventions, the damage to the vessel wall greatly impairs the accuracy of quantitative angiography inducing haziness of the contours and intraluminal filling defects [1, 2]. Under these circumstances, videodensitometry was a promising alternative [3] but its application has been precluded so far by the presence of basic methodological limitations, requiring further refinement of the technique [4, 5]. Intracoronary ultrasound has the potential for a more accurate assessment of lumen dimensions in the presence of luminal cross-sectional area of complex geometry [6, 7]. The dimension of the currently available ultrasound catheters (diameter 1.0–1.45 mm), however, limits the application of intravascular ultrasound to the assessment of severe coronary stenoses. In addition, an accurate evaluation of all the geometric characteristics of a coronary stenosis (diameter of a normal reference segment, length of inlet-outlet segments and of the stenosis and minimal luminal cross-sectional area) can be obtained only with an automatic three-dimensional reconstruction of multiple ultrasonic cross-sections, a technology still in phase of development and requiring extensive clinical validation [8].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 429.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 549.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Serruys PW, Foley DP, de Feyter PJ. Restenosis after coronary angioplasty; a proposal of new comparative approaches based on quantitative angiography. Br Heart J 1992; 68; 417–424.

    Article  PubMed  CAS  Google Scholar 

  2. De Cesare NB, Williamson PR, Moore NB, DeBoe SF, Mancini GBJ. Establishing comprehensive, quantitative criteria for detection of restenosis and remodelling after percutaneous transluminal coronary angioplasty. Am J Cardiol 1992; 69: 77–83.

    Article  PubMed  Google Scholar 

  3. Serruys PW, Reiber JHC, Wijns W, van den Brand M, Kooljman CJ, Katen ten HJ, Hugenholtz PG. Assessment of percutaneous transluminal coronary angioplasty by quantitative coronary angiography; diameter versus densitometric area measurements. Am J Cardiol 1984; 54: 482–488.

    Article  PubMed  CAS  Google Scholar 

  4. Sanz ML, Mancini GBJ, Lefree MT, Mickelson JK, Starling MR, Vogel RA, Topol EJ. Variability of quantitative digital substraction coronary angiography before and after percutaneous transluminal coronary angioplasty. Am J Cardiol 1987; 60: 55–60.

    Article  PubMed  CAS  Google Scholar 

  5. Whiting JS, Pfaff JM, Eigler NL. Advantages and limitations of videodensitometry in quantitative coronary angiography. In: Reiber JHC, Serruys PW (editors) Quantitative coronary arteriography, Dordrecht-Boston-London, Kluwer Academic Publisher, 1991: 43–54.

    Chapter  Google Scholar 

  6. Tenaglia AN, Buller CE, Kisslo KB, Stack RS, Davidson CJ. Mechanisms of balloon angioplasty in vivo assesed by intravascular ultrasound imaging. J Am Coll Cardiol 1992; 20: 685–691.

    Article  PubMed  CAS  Google Scholar 

  7. Honye J, Mahon DJ, White CJ, Ramee SR, Tobis JM. Morphological effects of coronary balloon angioplasty in vivo assessed by intravascular ultrasound imaging. Circulation 1992; 85: 1012–1025.

    Article  PubMed  CAS  Google Scholar 

  8. Di Mario C, Wenguang L, Linker DT, Gussenhoven EJ, Serruys PW, Roelandt JRTC. Three-dimensional reconstruction in intravascular ultrasound. Promises and practical problems. Int J Cardiac Imag 1993; 66–77.

    Google Scholar 

  9. Doucette JW, Corl DP, Payne HP, Flynn AE, Goto M, Nassi M, Segal J. Validation of a Doppler guide wire for intravascular measurement of coronary artery flow velocity. Circulation 1992; 85: 1899–1911.

    Article  PubMed  CAS  Google Scholar 

  10. Emanuelsson H, Dohnal M, Lamm C, Tenerz L. Initial experiences with a miniaturized pressure transducer during coronay angioplasty. Cath Cardiovasc Diagn 1991; 24: 137–143.

    Article  CAS  Google Scholar 

  11. Zijlstra F, Serruys PW, Hugenholtz PG. Papaverine: the ideal coronary vasodilator for investigating coronary flow reserve? A study of timing, magnitude, reproducibility and safety of the coronary hyperemic response after intracoronary papaverine. Cathet Cardiovasc Diagn 1986; 12: 298–303.

    Article  PubMed  CAS  Google Scholar 

  12. Zijlstra F, Reiber JHC, Serruys PW. Does intracoronary papaverine dilate epicardial coronary arteries? Implications for the assessment of coronary flow reserve. Cathet Cardiovasc Diagn 1988; 14: 1–6.

    Article  PubMed  CAS  Google Scholar 

  13. Haase J, Di Mario C, Slager CJ, van der Giessen WJ, den Boer A, de Feyter PJ, Reiber JHC, Verdouw PD, Serruys PW. In-vivo validation of on-line and off-line geometric coronary measurements using insertion of stenosis phantoms in porcine coronary arteries. Cathet Cardiovasc Diagn 1992; 27: 16–27.

    Article  PubMed  CAS  Google Scholar 

  14. Reiber JHC, Serruys PW, Koojman CJ, Wijns W, Slager CJ, Gerbrands JJ, Schumbiers JCH, den Boer A, Hugenholtz PG. Assessment of short-, medium-, and long-term variations in arterial dimensions from computer-assisted quantitation of coronary cineangiograms. Circulation 1985; 71: 280–288.

    Article  PubMed  CAS  Google Scholar 

  15. Tadaoka S, Kagiyama M, Hiramatsu O. Accuracy of 20 MHz Doppler catheter coronary artery velocimetry for measurement of coronary blood flow velocity. Cath Cardiovasc Diag 1990; 19: 205–213.

    Article  CAS  Google Scholar 

  16. Di Mario C, Roelandt JRTC, de Jaegere P, Linker DT, Oomen J, Serruys PW. Limitations of the zero-crossing detector in the analysis of intracoronary Doppler. A comparison with fast Fourier transform of basal, hyperemic and transstenotic blood flow velocity measurements in patients with coronary artery disease. Cathet Cardiovasc Diagn 1992; 28: 56–64.

    Article  Google Scholar 

  17. Di Mario C, de Feyter PJ, Slager CJ, de Jaegere P, Roelandt JRTC, Serruys PW. Intracoronary blood flow velocity and transstenotic pressure gradient using sensor-tip pressure and Doppler guidewires. Cath Cardiovasc Diagn 1993; 28: 311–319.

    Article  Google Scholar 

  18. Kirkeeide RL, Gould KL, Parsel L. Assessment of coronary stenoses by myocardial perfusion imaging during pharmacologic coronary vasodilatation. Validation of coronary flow reserve as a single integrated functional measure of stenosis severity reflecting all its geometric dimensions. J Am Coll Cardiol 1986; 7: 103–113.

    Article  PubMed  CAS  Google Scholar 

  19. Gould KL, Kirkeeide RL, Buchi M. Coronary flow reserve as a physiologic measure of stenosis severity. J Am Coll Cardiol 1990; 15: 459–474.

    Article  PubMed  CAS  Google Scholar 

  20. Young DF, Tsai FY. Flow characteristics in models of arterial stenoses-II. Unsteady flow. J Biomechanics 1973; 6: 547–559.

    Article  CAS  Google Scholar 

  21. Young DF, Cholvin NR, Roth AC. Pressure drop across artificially induced stenoses in the femoral arteries of dogs. Circ Res 1975; 36: 735–743.

    Article  PubMed  CAS  Google Scholar 

  22. Brown GB, Bolson E, Frimer M, Dodge HT. Quantitative coronary arteriography. Estimation of dimensions, hemodynamic resistance and atheroma mass of coronary artery lesions using the arteriogram and digital computation. Circulation 1977; 55: 329–337.

    Article  PubMed  CAS  Google Scholar 

  23. Lipscomb K, Hooten S. Effect of stenotic dimensions and blood flow on the hemodynamic significance of model coronary arterial stenoses. Am J Cardiol 1978; 42; 781–792.

    Article  PubMed  CAS  Google Scholar 

  24. Siebes M, Gottwik M, Schlepper M. Quantitative and qualitative experimental studies in the evaluation of model coronary arteries from angiograms. Computers Cardiol 1982: 211–214.

    Google Scholar 

  25. Bache RJ, Schwartz JS. Effect of perfusion pressure distal to a coronary stenosis on transmural myocardial blood flow. Circulation 1982; 65: 928–935.

    Article  PubMed  CAS  Google Scholar 

  26. Gould KL. Phasic pressure-flow and fluid-dynamic analysis. In: Gould LD (editor) “Coronary Artery Stenosis”, Elsevier, New York-Amsterdam-London, 1991: 40–52.

    Google Scholar 

  27. Gould KL, Lipscomb K, Hamilton GW. Physiologic basis for assessing critical coronary stenosis: instantaneous flow response and regional distribution during coronary hyperemia as measures of coronary flow reserve. Am J Cardiol 1974; 33: 87–94.

    Article  PubMed  CAS  Google Scholar 

  28. Wilson RF, Marcus ML, White CW. Prediction of the physiologic significance of coronary arterial lesions by quantitative lesion geometry in patients with limited coronary artery disease. Circulation 1987; 75: 723–732.

    Article  PubMed  CAS  Google Scholar 

  29. Harrison DG, White CW, Hiratzka LF, Eastham CL, Marcus ML. The value of lesional cross-sectional area determined by quantitative coronary angiography in assessing the physiologic significance of proximal left anterior descending coronary artery stenoses. Circulation 1984; 69: 111–119.

    Google Scholar 

  30. Klocke FJ. Measurements of coronary flow reserve: defining pathophysiology versus making decisions about patient care. Circulation 1987; 76: 245–253.

    Article  Google Scholar 

  31. McGinn Al, White CW, Wilson RF. Interstudy variability of coronary flow reserve: influence of heart rate, arterial pressure and ventricular preload. Circulation 1990; 81: 1319–1330.

    Google Scholar 

  32. Serruys PW, Di Mario C, Meneveau N, de Jaegere P, Strikwerda S, de Feyter PJ, Emanuels-son H. Intracoronary pressure and flow velocity from sensor tip guidewires. A new methodological comprehensive approach for the assessment of coronary hemodynamics before and after interventions. Am J Cardiol 1993; 71: 41D - 53D.

    Article  PubMed  CAS  Google Scholar 

  33. Wilson RF, Johnson MR, Marcus ML, Aylward PEG, Skorton DJ, Collins S, White CW. The effect of coronary angioplasty on coronary blood flow reserve. Circulation 1988; 71: 873–885.

    Article  Google Scholar 

  34. Kern MJ, Deligonul U, Vandormael M, Labovitz A, Gudipati CV, Gabliani G, Bodet J, Shah Y, Kennedy HL. Impaired coronary vasodilator reserve in the immediate postcoronary angioplasty period: analysis of coronary artery flow velocity indexes and regional cardiac venous efflux. J Am Coll Cardiol 1989; 13: 860–872.

    Article  PubMed  CAS  Google Scholar 

  35. Segal J, Kern MJ, Scott NA, King SB, Doucette JW, Heuser RR, Ofili E, Siegel R. Alterations of phasic coronary artery flow velocity in humans during percutaneous coronary angioplasty. J Am Coll Cardiol 1992; 20: 276–286.

    Article  PubMed  CAS  Google Scholar 

  36. Ofili EO, Kern MJ, Labovitz AJ, Vrain J, Segal J, Aguirre FV, Castello R. Analysis of coronary blood flow velocity dynamics in angiographically normal and stenosed arteries before and after endolumen enlargment by angioplasty. J Am Coll Cardiol 1993; 21: 308–316.

    Article  PubMed  CAS  Google Scholar 

  37. Serruys PW, Juilliere Y, Zijlstra F, Beatt KJ, De Feyter PJ, Suryapranata H, van den Brand M, Roelandt J. Coronary blood flow velocity during percutaneous transluminal coronary angioplasty as a guide for assessment of the functional result. Am J Cardiol 1988; 61: 253–259.

    Article  PubMed  CAS  Google Scholar 

  38. Grüntzig AR, Senning A, Slegenthaler WE. Nonoperative dilatation of coronary-artery stenosis: percutaneous transluminal coronary angioplasty. N Engl J Med 1979; 301: 61–68.

    Article  PubMed  Google Scholar 

  39. Serruys PW, Wijns W, Reiber JHC, de Feyter PJ, van den Brand M, Piscione F, Hugenholtz PG. Values and limitations of transstenotic pressure gradients measured during percutaneous coronary angioplasty. Herz 1985; 10: 337–342.

    PubMed  CAS  Google Scholar 

  40. Leiboff R, Bren G, Katz R, Korhegi R, Katzen B, Ross A. Determinants of transstenotic gradients observed during angioplasty: an experimental model. Am J Cardiol 1983; 52: 1311–1317.

    Article  PubMed  CAS  Google Scholar 

  41. Leimgruber PP, Roubin GS, Hollman J. Restenosis after successful coronary angioplasty in patients with single vessel disease. Circulation 1986; 73: 710–717.

    Article  PubMed  CAS  Google Scholar 

  42. Emanuelsson H, Lamm C, Di Mario C, Serruys PW. Measurements of coronary artery pressure and stenosis gradients. Clinical applications and comparison with quantitative angiography. In: Serruys PW, Foley DL, de Feyter PJ (editors) QCA in clinical practice, Kluwer Academic Publishers, Dordrecht, 1993 (in press).

    Google Scholar 

  43. Walinsky P, Santamore WP, Wiener L. Dynamic changes in the hemodynamic severity of a coronary arterial stenosis in a canine model. Cardiovasc Res 1979; 13: 113–118.

    Article  PubMed  CAS  Google Scholar 

  44. Mancini GBJ, Mc Gillem MJ, DeBoe SF, Gallagher KP. The diastolic hyperemic flow vs pressure relation: a new index of coronary stenosis severity and flow reserve. Circulation 1989; 80: 941–950.

    Article  PubMed  CAS  Google Scholar 

  45. Mancini GBJ, Cleary RM, DeBoe SF, et al. Instantaneous hyperemic flow-vs-pressure slope index. Microsphere validation of an alternative to masures of coronary flow reserve. Circulation 1991; 84: 862–870.

    Article  PubMed  CAS  Google Scholar 

  46. Cleary RM, Aron D, Moore NB, DeBoe SF, Mancini GBJ. Tachycardia, contractility and volume loading alter conventional indexes of coronary flow reserve, but nog the instantenous hyperemic flow versus pressure slope index. J Am Coll Cardiol 1992; 20: 1261–1269.

    Article  PubMed  CAS  Google Scholar 

  47. Di Mario C, Meneveau N, De Feyter P, Gil R, Serruys PW. Assessment of the pressure-flow velocity relation using an intracoronary Doppler guidewire (abstr). J Am Coll Cardiol 1993; 21: 348A.

    Google Scholar 

  48. Pijls N, Kirkeeide RL, Gould KL et al. Quantitation of relative coronary flow reserve and collateral flow by pressure measurements duting maximal hyperemia: a rapid accurate method for assessing functional stenosis severity at PTCA. Circulation 1993; 86: 1354–61.

    Article  Google Scholar 

  49. Seiler C, Kirkeeise RL, Gould KL. Basic structure-function relations of the epicardial coronary vascular tree. Circulation 1992; 85: 1987–2001.

    Article  PubMed  CAS  Google Scholar 

  50. Gould KL. Interactions with the distal coronary vascular bed. In: Gould KL (editor) Coronary artery stenosis. Elsevier, New York-Amsterdam-London, 1991; 31–39.

    Google Scholar 

  51. De Bruyne B, Pijls NHJ, Paulus WJ, van Trimpont PJ, Sys SU, Heyndrickx GR. Transstenotic coronary pressure gradient measurement in man: in vitro and in vivo evaluation of a new pressure monitoring PTCA guide-wire. J Am Coll Cardiol 1993; 22: 119–26.

    Article  PubMed  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Di Mario, C. et al. (1994). Assessment of coronary stenosis severity from simultaneous measurement of transstenotic pressure gradient and flow. A comparison with quantitative coronary angiography. In: Serruys, P.W., Foley, D.P., De Feyter, P.J. (eds) Quantitative Coronary Angiography in Clinical Practice. Developments in Cardiovascular Medicine, vol 145. Springer, Dordrecht. https://doi.org/10.1007/978-94-015-8358-9_16

Download citation

  • DOI: https://doi.org/10.1007/978-94-015-8358-9_16

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-4295-8

  • Online ISBN: 978-94-015-8358-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics