Skip to main content

Calculation of maximum coronory, myocardial, and collateral blood flow by pressure measurements in the coronary circulation

  • Chapter
  • 68 Accesses

Part of the book series: Developments in Cardiovascular Medicine ((DICM,volume 145))

Abstract

Since many years it has been widely recognized that the functional significance of coronary artery disease cannot be completely understood from anatomic information obtained by the coronary arteriogram. The shortcomings of the angiogram are most pronounced in the evaluation of PTCA-results, where the edges of the lesion are often hazy and hard to determine, whereas especially in this situation on-line information about the impeding effect of the (dilated) stenosis on blood flow is of paramount importance. Also in diagnostic catheterization, especially in intermediate lesions, determination of the functional significance of the stenosis remains cumbersome. Therefore, may attempts have been made to measure coronary blood flow directly. Most approaches in this field, however, are either crude, inaccurate, laborious, expensive, require complex equipment or imply certain risks for the patient [1–4]. Of all those methods, only comparison of blood flow velocities by the Doppler wire and ECG-triggered digital subtraction angiography have gained some clinical application [5,6]. Both methods, however, only provide information about anterograde blood flow through the large epicardial coronary arteries. No information about the contribution of collateral flow to total myocardial perfusion can be obtained. In fact, no quantitative methods to assess collateral flow in conscious man are available at present. Both in diagnostic catheterization and in PTCA, it would be of great importance if a method would be available that enables measurement of myocardial perfusion by simple means and inexpensively, without extra instruction to the patient and without prolongation of the procedure. It would be of even more importance if the contribution of coronary blood flow (in the stenotic artery) and collateral blood flow to total myocardial perfusion could be separately quantified. In this chapter, the theoretical background and experimental validation of such a method will be discussed, which allows to achieve all information about flow simply from pressure measurements in the coronary circulation.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   429.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   549.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Pijls NHJ. Methods of measuring myocardial blood flow. In: Pijls NHJ, editor. Maximal myocardial perfusion as a measure of the functional significance of coronary artery disease. Dordrecht: Kluwer 1991; 27–40.

    Chapter  Google Scholar 

  2. Gould KL, Kirkeeide RL, Buchi M. Coronary flow reserve as a physiologic measure of stenosis severity. J Am Coll Cardiol 1990; 15: 459–74.

    Article  PubMed  CAS  Google Scholar 

  3. Gould KL. Identifying and measuring severity of coronary artery stenosis. Quantitative coronary arteriography and positron emission tomography. Circulation 1988; 78: 237–245.

    Article  PubMed  CAS  Google Scholar 

  4. Kirkeeide RL, Gould KL, Parsel L. Assessment of coronary stenoses by myocardial perfusion imaging during pharmacologic coronary vasodilation. VIII. Validation of coronary flow reserve as a single integrated functional measure of stenosis severity reflecting all its geometric dimensions. J Am Coll Cardiol 1986; 7: 103–113.

    Article  PubMed  CAS  Google Scholar 

  5. Donohue TJ, Kern MJ, Aguirre FV, et al. Determination of the hemodynamic significance of angiographically intermediate coronary stenoses by intracoronary Doppler flow velocity. J Am Coll Cardiol 1992; 19: 242A

    Google Scholar 

  6. Pijls NHJ. The concept of maximal flow ratio for immediate evaluation of PTCA result. In: Pijls NHJ, editor. Maximal myocardial perfusion as a measure of the functional significance of coronary artery disease. Dordrecht: Kluwer, 1991; 111–136.

    Chapter  Google Scholar 

  7. De Bruyne B, Pijls NHJ, Paulus WJ, Vantrimpont PJV, Sys SU, Heyndrickx GR. Transstenotic coronary pressure gradient measurement in man: In vitro and in vivo evaluation of a new pressure monitoring PTCA guide wire. J Am Coll Cardiol 1993; (published in July, 1993).

    Google Scholar 

  8. Meier B, Luethy P, Finci L, Steffenino, Rutishauser W. Coronary wedge pressure in relation to spontaneously visible and recruitable collaterals. Circulation 1987; 75: 906–913.

    Article  PubMed  CAS  Google Scholar 

  9. Rothman MT, Baim DS, Simpson JB, Harrison DC. Coronary hemodynamics during PTCA. Am J Cardiol 1982; 49: 1615–1622.

    Article  PubMed  CAS  Google Scholar 

  10. Chokshi SK, Meyers S, Abi-Mansour P. Percutaneous transluminal coronary angioplasty: ten years’ experience. Prog Cardiovasc Dis 1987; 30: 147–210.

    Article  PubMed  CAS  Google Scholar 

  11. MacIsaac HC, Knudtson ML, Robinson VJ, Manyari DE. Is the residual translesional pressure gradient useful to predict regional myocardial perfusion after percutaneous transluminal coronary angioplasty? Am Heart J 1989; 117: 783–790.

    Article  PubMed  CAS  Google Scholar 

  12. Pijls NHJ, Aengevaeren WRM, Uijen GJH, et al. The concept of maximal flow ratio for immediate evaluation of Percutaneous Transluminal Coronary Angiography result by videodensitometry. Circulation 1991; 83: 854–865.

    Article  PubMed  CAS  Google Scholar 

  13. De Bruyne B, Meier B, Finci L, Urban P, Rutishauser W. Potential protective effect of high coronary wedge pressure on left ventricular function after coronary occlusion. Circulation 1988; 78: 566–572.

    Article  PubMed  Google Scholar 

  14. Anderson HV, Roubin GS, Leimgruber PP, et al. Measurement of transstenotic pressure gradient during percutaneous transluminal coronary angioplasty. Circulation 1986; 73: 122–330.

    Article  Google Scholar 

  15. Nissen SE, Gurley JC. Assessment of the functional significance of coronary stenoses. Is digital angiography the answer? Circulation 1990; 81: 1431–1435.

    Article  PubMed  CAS  Google Scholar 

  16. Pijls NHJ, Uijen GJH, Hoevelaken A, et al. Mean transit time for the assessment of myocardial perfusion by videodensitometry. Circulation 1990; 81: 1331–1340.

    Article  PubMed  CAS  Google Scholar 

  17. Gould KL, Lipscomb K, Hamilton GW: Physiologic basis for assessing critical coronary stenosis: instantaneous flow response and regional distribution during coronary hyperemia as measures of coronary flow reserve. Am J Cardiol 1974; 33: 87–94.

    Article  PubMed  CAS  Google Scholar 

  18. Wilson RF, Laughlin DE, Ackell PH, et al. Transluminal subselective measurement of coronary artery blood flow velocity and vasodilator reserve in man. Circulation 1985; 72: 82–92.

    Article  PubMed  CAS  Google Scholar 

  19. Zijlstra F, Serruys PW, Hugenholtz PG. Papaverine: the ideal coronary vasodilator for investigating coronary flow reserve? A study of timing, magnitude, reproducibility and safety of the coronary hyperemic response after intracoronary papaverine. Cathet Cardiovasc Diagn 1986; 12: 298–9.

    Article  PubMed  CAS  Google Scholar 

  20. Wilson RF, Wyche K, Christensen BV, Zimmer S, Laxson DD. Effects of adenosine on human coronary arterial circulation. Circulation 1990; 82: 1595–1606.

    Article  PubMed  CAS  Google Scholar 

  21. Wilson RF, White CW. Intracoronary papaverine: an ideal coronary vasodilator for studies of the coronary circulation in conscious humans. Circulation 1986; 73: 444–451.

    Article  PubMed  CAS  Google Scholar 

  22. Pijls NHJ, Van Son JAM, Kirkeeide RL, DeBruyne B, Gould KL. Experimental basis of determining maximum coronary, myocardial, and collateral blood flow by pressure measurements for assessing functional stenosis severity before and after PTCA. Circulation 1993; 87: 1354–1367.

    Article  PubMed  CAS  Google Scholar 

  23. Klocke FJ. Measurements of coronary flow reserve: defining pathophysiology versus making decisions about patient care. Circulation 1987; 76: 1183–1189.

    Article  PubMed  CAS  Google Scholar 

  24. White CW, Wright CB, Doty DB, et al. Does visual interpretation of the coronary arteriogram predict the physiological importance of a coronary stenosis? Engl J Med 1984; 310: 819–824.

    Article  CAS  Google Scholar 

  25. Hoffman JIE. Maximal coronary flow and the concept of coronary vascular reserve. Circulation 1984; 70: 153–159.

    Article  PubMed  CAS  Google Scholar 

  26. Klein LW, Agarwal JB, Schneider RM, Hermann G, Weintraub WS, Helfant RH. Effects of previous myocardial infarction on measurements of reactive hyperemia and the coronary vascular reserve. J Am Coll Cardiol 1986; 8: 357–363.

    Article  PubMed  CAS  Google Scholar 

  27. Rentrop KP, Thornton JC, Feit F, Van Buskirk M. Determinants and protective potential of coronary arterial collaterals as assessed by an angioplasty model. Am J Cardiol 1988; 61: 667–684.

    Article  Google Scholar 

  28. Schaper W Influence of physical exercise on coronary collateral blood flow in chronic experimental two-vessel occlusion. Circulation 1982; 65: 905–912.

    Article  PubMed  CAS  Google Scholar 

  29. Wilson RF, White CW. Serious ventricular dysrhythmias after intracoronary papaverine. Am J Cardiol 1988; 62: 1301–1302.

    Article  PubMed  CAS  Google Scholar 

  30. Ellis AK, Klocke FJ. Effects of preload on the transmural distribution of perfusion and pressure flow relationships in the canine coronary vascular bed. Circ Res 1979; 46: 68–77.

    Article  Google Scholar 

  31. Marcus ML. Autoregulation in the coronary circulation. In: Marcus ML editor. The coronary circulation in health and disease New York: McGraw-Hill, 1983: 102–107.

    Google Scholar 

  32. Pantely GA, Ladley HD, Bristow JD. Low zero-flow pressure and minimal capacitance effect on diastolic coronary arterial pressure-flow relationships during maximum vasodilation in swine. Circulation 1984; 70: 485–494.

    Article  PubMed  CAS  Google Scholar 

  33. Dole WP, Alexander GM, Campbell AB, Hixson EL, Bishop VS. Interpretation and physiological significance of diastolic coronary artery pressure-flow relationships in the canine coronary bed. Circ Res 1984; 55: 215–226.

    Article  PubMed  CAS  Google Scholar 

  34. Klocke FJ, Mates RE, Canty JM, Ellis AK. Coronary pressure-flow relationships: controversial issues and probable implications. Cire Res 1985; 56: 310–323.

    Article  CAS  Google Scholar 

  35. Klocke FJ, Ellis AK, Canty JM. Interpretation of changes in coronary flow that accompany pharmacologic interventions. Circulation 1987; 75 (supplV): 34–8.

    Google Scholar 

  36. Marcus ML. Coronary anatomy. In: Marcus ML, editor. The coronary circulation in health and disease. New York: McGraw-Hill, 1983; pp. 4–5.

    Google Scholar 

  37. Spaan JAE, Breuls NPW, Laird JD. Diastolic-systolic coronary flow differences are caused by intramyocardial pump action in the anesthetized dog. Circ Res 1981; 49: 584–593.

    Article  PubMed  CAS  Google Scholar 

  38. Pupita G, Maseri A, Kaski JC, et al. Myocardinal ischemia caused by distal coronary artery constriction in stable angina pectoris. N Engl J Medic 1990; 323: 514–520.

    Article  CAS  Google Scholar 

  39. Fujita M, McKown DP, McKown MD, Hartley JW, Franklin D. Evaluation of coronary collateral development by regional myocardial function and reactive hyperemia. Cardiovasc Res 1987; 21: 377–384.

    Article  PubMed  CAS  Google Scholar 

  40. Yamamato H, Tomoike H, Shimokawa H, Nabeyama S, Nakamura M. Development of collateral function with repetitive coronary occlusion in a canine model reduces myocardial reactive hyperemia in the absence of significant coronary stenosis. Circ Res 1984; 55: 623–632.

    Article  Google Scholar 

  41. Yamanishi K, Fujita M, Ohno A, Sasayama S. Importance of myocardial ischemia for recruitment of coronary collateral circulation in dogs. Cardiovasc Res 1990; 24: 271–277.

    Article  PubMed  CAS  Google Scholar 

  42. Mohri M, Tomoike H, Noma M, Inoue T, Hisano K, Nakamura M. Duration of ischemia is vital for collateral development: repeated brief coronary artery occlusions in conscious dogs. Circ Res 1989; 64: 287–96.

    Article  PubMed  CAS  Google Scholar 

  43. De Bruyne B, Baudhuin T, Melin JA, et al. Determination of the relative coronary flow reserve by pressure measurements. Validation in man by 0–15 water positron emission tomography. Circulation 1992; 86: I - 709.

    Google Scholar 

  44. Gould KL. Coronary Steal. Is it clinically important ? Chest 1989; 96: 227–9.

    Article  PubMed  CAS  Google Scholar 

  45. Demer LL, Gould KL, Goldstein RA, Kirkeeide RL. Noninvasive assessment of coronary collaterals in man by PET perfusion imaging. J Nucl Medic 1990; 31: 259–70.

    CAS  Google Scholar 

  46. Gensini GG, DaCosta BCB. The coronary collateral circulation in living man. Am J Cardiol 1969; 24: 393–400.

    Article  PubMed  CAS  Google Scholar 

  47. Schaper W. The role of the collateral circulation in human ischemie heart disease. In: Black DAK, editor. The collateral circulation of the heart. New York, Elsevier, 1971; 261–269.

    Google Scholar 

  48. Patterson RE, Jones-Collins BA, Aamodt R, Ro Y. Differences in collateral myocardial blood following gradual vs abrupt coronary occlusion. Cardiovasc Res 1983; 17: 207–214.

    Article  PubMed  CAS  Google Scholar 

  49. Feldman RL, Pepine CJ. Evaluation of coronary collateral circulation in conscious humans. Am J Cardiol 1984; 53: 1233–1238.

    Article  PubMed  CAS  Google Scholar 

  50. Schaper W, Goerge G, Winkler B, Schaper J. The collateral circulation of the heart. Progress Cardiovasc Dis 1988; 31: 57–77.

    Article  CAS  Google Scholar 

  51. Hirai T, Fujita M, Nakajima H, et al. Importance of collateral circulation for prevention of left ventricular aneurysm formation in acute myocardial infarction. Circulation 1989; 79: 791–6.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Pijls, N.H.J. et al. (1994). Calculation of maximum coronory, myocardial, and collateral blood flow by pressure measurements in the coronary circulation. In: Serruys, P.W., Foley, D.P., De Feyter, P.J. (eds) Quantitative Coronary Angiography in Clinical Practice. Developments in Cardiovascular Medicine, vol 145. Springer, Dordrecht. https://doi.org/10.1007/978-94-015-8358-9_14

Download citation

  • DOI: https://doi.org/10.1007/978-94-015-8358-9_14

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-4295-8

  • Online ISBN: 978-94-015-8358-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics