Skip to main content

Intracoronary pressure measurements with a 0.015″ fluid-filled angioplasty guide wire

  • Chapter
Quantitative Coronary Angiography in Clinical Practice

Abstract

The usefulness of distal coronary pressure monitoring during percutaneous transluminal coronary angioplasty (PTCA) was recognized by the pioneers in balloon angioplasty as testified by the design of a fluid-filled lumen in the first generation of balloon catheters. However, the interest in measuring coronary pressure has oscillated between enthusiasm of having a simple index of coronary hemodynamics [1–4] and disillusion due to the inconsistency of the results [5–7]. Clinical practice learned that a marked reduction in coronary flow often accompanies the placement of the deflated balloon catheter across the stenosis. Accordingly, it was admitted that, even with the presently available ultra low profile balloon angioplasty catheters, a marked overestimation in gradient could occur. The development of monorail angioplasty catheters precluding pressure measurements, further prompted the trend away from measuring distal pressures during PTCA. Nevertheless, it still holds that the knowledge of the transstenotic pressure gradient can be of aid to estimate dilatation efficacy [8–10]. Accordingly, a fluid-filled pressure monitoring PTCA wire was developed. It is the smallest coronary pressure monitoring device ever built and, hence, it should not cause additional obstruction to coronary flow when positioned across the lesion. Furthermore, monorail balloon catheters are best suited to be used over this wire to perform angioplasty.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 429.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 549.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Rothman MT, Baim DS, Simpson JB, Harrison DC. Coronary hemodynamics during percutaneous transluminal coronary angioplasty. Am J Cardiol 1982; 49: 1615–1622.

    Article  PubMed  CAS  Google Scholar 

  2. Haraphongse M, Tymchak W, Burton JR, Rossai RE. Implication of transstenotic pressure gradient measurement during coronary artery angioplasty. Cathet Cardiovasc Diagn 1986; 12: 80–84.

    Article  PubMed  CAS  Google Scholar 

  3. Peterson R, King S, Fajman W et al. Relationship of coronary artery stenosis and gradient to exercise-induced ischemia (abstr). J Am Coll Cardiol 1983; 1 (2): 673.

    Google Scholar 

  4. Banka VS, Agarwal JB, Bodenheimer MM et al. Determination of the severity of coronary stenoses in man: correlation of angiography and hemodynamic (abstr). Circulation 1981; 64: Suppl IV-108.

    Google Scholar 

  5. Feldman RL, Anderson DJ. Gradients at PTCA: Physiological or artifactual ? (abstr) J Am Coll Cardiol 1985; 5: 525.

    Google Scholar 

  6. Serruys PW, Wijns W, Reiber JHC et al. Values and limitations of transstenotic pressure gradients measured during percutaneous coronary angioplasty. Herz 1985; 10: 337–342.

    PubMed  CAS  Google Scholar 

  7. Leiboff R, Bren G, Katz R et al. Determinants of transstenotic gradients observed during angioplasty: an experimental model. Am J Cardiol 1983; 52: 1311–1317.

    Article  PubMed  CAS  Google Scholar 

  8. Leimgruber PP, Roubin GS, Hollman J et al. Restenosis after successful coronary angioplasty in patients with single-vessel disease. Circulation 1986; 73: 710–717.

    Article  PubMed  CAS  Google Scholar 

  9. Anderson HV, Roubin GS, Leimgruber PP et al. Measurement of transstenotic pressure gradients during percutaneous transluminal coronary angioplasty. Circulation 1986; 73: 1223–1230.

    Article  PubMed  CAS  Google Scholar 

  10. Redd DC, Roubin, GS, Leimgruber PP et al. The transstenotic pressure gradient trend as a predictor of acute complications after percutaneous transluminal coronary angioplasty. Circulation 1987; 76: 792–801.

    Article  PubMed  CAS  Google Scholar 

  11. Reiber JHC, Serruys PW, Kooijman CJ et al. Assessment of short-, medium and longterm variations in arterial dimensions from computer-assisted quantification of coronary cineangiograms. Circulation 1985; 71: 280–288.

    Article  PubMed  CAS  Google Scholar 

  12. Grondin CM, Dyrda I, Pasternac A et al. Discrepancies between cineangiographic and post-mortem findings in patients with coronary artery disease and recent myocardial revascularization. Circulation 1974; 49: 703–708.

    Article  PubMed  CAS  Google Scholar 

  13. Zir LM, Miller SW, Dinsmore RE, Gilbert JP, Harthorne JW. Interobserver variability in coronary angiography. Circulation 1976; 53: 627–632.

    Article  PubMed  CAS  Google Scholar 

  14. Meier B, Grüntzig AR, Goebel N et al. Assessment of stenoses in coronary angioplasty inter and intraobserver variability. Int J Card 1983; 3: 159–169.

    Article  CAS  Google Scholar 

  15. Brown BG, Bolson E, Frimer M, Dodge HT. Quantitative coronary angiography: Estimation of dimensions, hemodynamic resistance and atheroma mass of coronary artery lesions using the arteriogram and digital computation. Circulation 1977; 53: 329–337.

    Article  Google Scholar 

  16. Mancini GBJ, Simon SB, McGillem MJ et al. Automated quantitative arteriography: morphologic and physiologic validation in vivo of a rapid digital angiographie method. Circulation 1987; 75: 475–460.

    Article  Google Scholar 

  17. Kalbfleisch SJ, Mc Gillem MJ, Simon SB et al. Automated quantitation of indexes of coronary lesion complexity: comparison between patients with stable and unstable angina. Circulation 1990; 82: 439–447.

    Article  PubMed  CAS  Google Scholar 

  18. Kirkeeide RL, Gould KL, Parsel L. Assessement of coronary severity by myocardial perfusion imaging during pharmacologic coronary vasodilation. VII. Validation of coronary flow reserve as a single integrated functional measure of stenosis severity reflecting all its geometric dimensions. J Am Coll Cardiol 1986. 7: 103–113.

    Article  PubMed  CAS  Google Scholar 

  19. Gould KL, Kirkeeide RL, Buchi M. Coronary flow reserve as a physiologic measure of stenosis severity. J Am Coll 1990; 15: 459–474.

    Article  CAS  Google Scholar 

  20. Wijns W, Serruys PW, Reiber JHC et al. Quantitative angiography of left anterior descending coronary artery: correlations with pressure gradient and results of exercise thallium scintigraphy. Circulation 1985; 71: 2273–279.

    Article  Google Scholar 

  21. Wilson RF, Marcus ML, White CW. Prediction of the physiologic significance of coronary arterial lesions by quantitative lesion geometry in patients with limited coronary artery disease. Circulation 1987; 75: 723–732.

    Article  PubMed  CAS  Google Scholar 

  22. White CW, Wright CB, Doty DB et al. Does visual interpretation of the coronary arteriogram predict the physiologic importance of a coronary stenosis? N Engl J Med 1984; 310: 819–824.

    Article  PubMed  CAS  Google Scholar 

  23. Harrison DG, White CW, Hiratzka LF. The value of lesion cross-sectional area determined by quantitative coronary angiography in assessing the physiologic significance of proximal left anterior descending coronary arterial stenoses. Circulation 1984; 69: 1111–1119.

    Article  PubMed  CAS  Google Scholar 

  24. The SHK, Gussenhoven EJ, Zhong Y et al. Effect of balloon angioplasty on femoral artery evaluated with intravascular ultrasound imaging. Circulation 1992; 86: 483–493.

    Article  PubMed  CAS  Google Scholar 

  25. Vogel R, Lefree M, Bates E et al. Application of digital techniques to selective coronary angiography: use of myocardial appearance time to measure coronary flow reserve. Am Heart J 1984; 107: 153–164.

    Article  PubMed  CAS  Google Scholar 

  26. Serruys PW, Julliere Y, Zijlstra F et al. Coronary blood flow velocity during percutaneous transluminal coronary angioplasty as a guide for assessment of the functional result. Am J Cardiol 1988; 61: 253–259.

    Article  PubMed  CAS  Google Scholar 

  27. Pijls NHJ, Aengevaeren WRM, Uijen GJH et al. The concept of maximal flow ratio for immediate evaluation of percutaneous transluminal coronary angioplasty result by videodensitometry. Circulation 1991; 83: 854–865.

    Article  PubMed  CAS  Google Scholar 

  28. Pijls PHJ, Uijen GJH, Hoevelaken A et al. Mean transit time for the assessment of myocardial perfusion by videodensitometry. Circulation 1990; 81: 1331–1340.

    Article  PubMed  CAS  Google Scholar 

  29. Laarman GJ, Serruys PW, Suryapranata H et al. Inability of coronary blood flow reserve measurements to assess the efficacy of coronary angioplasty in the first 24 hours in unselected patients. Am Heart J 1991; 122: 631–639.

    Article  PubMed  CAS  Google Scholar 

  30. Pijls PHJ, van Son JAM, Kirkeeide RL et al. Experimental basis of determining maximum coronary myocardial, and collateral blood flow by pressure measurements for assessing functional stenosis severity before and after PTCA. Circulation 1993; 86: 1354–1367.

    Article  Google Scholar 

  31. Ganz P, Harrington DP, Gaspar J, Barry WH. Phasic pressure gradient across coronary and renal artery stenoses in humans. Am Heart J 1983; 106: 1399–1406.

    Article  PubMed  CAS  Google Scholar 

  32. Ganz P, Abben R, Friedman PL et al. Usefulness of transstenotic pressure gradient measurements during diagnostic catheterization. Am J Cardiol 1985; 55: 910–904.

    Article  PubMed  CAS  Google Scholar 

  33. Sigwart U, Grbic M, Goy JJ, Essinger A. High fidelity pressure gradients across coronary artery stenoses before and after transluminal angioplasty (PTCA) (abstr). J Am Coll Cardiol 1985; 5: 521.

    Article  Google Scholar 

  34. Gould KL, Lipscomb K. Effects of coronary stenosis on coronary flow reserve and resistance. Am J Cardiol 1974; 34: 48–55.

    Article  PubMed  CAS  Google Scholar 

  35. Doucette JW, Corl DP, Payne H et al. Validation of a Doppler guide wire for intravascular measurement of coronary artery flow velocity. Circulation 1992; 85: 1899–1911.

    Article  PubMed  CAS  Google Scholar 

  36. Emanuelsson H, Dohnal M, Lamm C, Tenerz L. Initial experiences with a miniaturized pressure transducer during coronary angioplasty. Cathet Cardiovasc Diagn 1991; 24: 137–143.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

de Bruyne, B., Pijls, N.H.J., Vantrimpont, P.J., Paulus, W.J., Sys, S.U., Heyndrickx, G.R. (1994). Intracoronary pressure measurements with a 0.015″ fluid-filled angioplasty guide wire. In: Serruys, P.W., Foley, D.P., De Feyter, P.J. (eds) Quantitative Coronary Angiography in Clinical Practice. Developments in Cardiovascular Medicine, vol 145. Springer, Dordrecht. https://doi.org/10.1007/978-94-015-8358-9_10

Download citation

  • DOI: https://doi.org/10.1007/978-94-015-8358-9_10

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-4295-8

  • Online ISBN: 978-94-015-8358-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics