Skip to main content

The Role of H-Bond in the Formation of Ices

  • Chapter
Hydrogen Bond Networks

Part of the book series: NATO ASI Series ((ASIC,volume 435))

  • 412 Accesses

Abstract

The large variety and complexity of the exotic phases of ice is in clear contrast to the simplicity of the water molecule. The properties of these phases are crucially dependent on the nature of the hydrogen bond. Our observation of the existence of two H-bonds in ices [1] indicates that the true reason for the formation of the large number of ice structures is the existence of a mixture of the strong and weak H-bonds, resulting in a large internal stress in the system. Hence relaxation of the stress, reducing the stress energy, could result in different distorted ice structures, in metastable states. In a similar way, the two types of H-bond can stabilise the two phases which are often proposed in the various mixture models of water. The details of our model are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Li, J-C. and Ross, D.K., Nature, 365, 327–329 (1993).

    Article  ADS  Google Scholar 

  2. Eisenberg, D. and Kauzmann, W., in “The Structure and Properties of Water” (Oxford University Press, 1965 ).

    Google Scholar 

  3. Home, R.A., in “Water and Aqueous Solutions”, (a Division of John Wiley & Sons, Inc. 1972 ).

    Google Scholar 

  4. Frank, H.S., in WATER: A Comprehensive Treatise (eds. F. Franks, Plenum Press) Vol 1, 515–577 ( Plenum Press, New York–London, 1972 ).

    Google Scholar 

  5. Pople, J.A., Proc. Roy. Soc. A205, 163–171 (1957).

    ADS  Google Scholar 

  6. Frank, H.S. and Wen, W.-Y., Dics. Faraday Soc. 24, 133–148 (1957).

    Article  Google Scholar 

  7. Claussen, W.F. J. Chem. Phys. 19 259, 662, 1425 (1951).

    Google Scholar 

  8. Geiger, A, Mausbach, P. and Schnitker, in “Water and Aqueous Solutions” (eds. G.W. Neilson and J.E. Enderby, Adam Hilger, Bristol and Boston, 1985 ) 15–39.

    Google Scholar 

  9. Stanley, H.E. and Teixeia, J., J. Chem. Phys. 73, 3404–3422 (1980).

    Article  ADS  MathSciNet  Google Scholar 

  10. Morokuma, K. and Pedersen, L., J. Chem. Phys. 48, 3275–3282 (1968).

    Article  ADS  Google Scholar 

  11. Millot, C. and Stone, A.J., Molecular Physics. 77, 439–462 (1992).

    Article  ADS  Google Scholar 

  12. Lee, C., Vanderbilt, D., Laasonen, K., Car, R. and Parrinello, M., Phys. Rev. Lett. 69, 462–465 (1992).

    Article  ADS  Google Scholar 

  13. Li, J-C., Londono, D.L., Ross, D.K., Finney, J.L., Sherman, W.F. and Tomkinson, J.,. J. Chem. Phys., 94, 6770–6775 (1991).

    Article  ADS  Google Scholar 

  14. Li, J-C. and Ross, D.K., Inter. Conf. on Physics and Chemistry of Ice (eds. N. Maeno and T. Hondoh) P27–49 (Hokkaido University Press, 1992 ).

    Google Scholar 

  15. Heggie, M. and Maynard, S., private communications.

    Google Scholar 

  16. Payne M.C. and Stone, A.J., private communications.

    Google Scholar 

  17. Kuhs, W.F. and Lehmann, M.S., in Water Science Review (ed. F. Franks) Vol 2, 1–65 (Cambridge University Press, 1985 ).

    Google Scholar 

  18. Kistenmacher, H., Popkie, H. and Clementi, E., J. Chem. Phys. 60, 4455–4465 (1972).

    Article  ADS  Google Scholar 

  19. Howe, R. and Whitworth, R.W., J. Chem. Phys. 50, 963–968 (1989).

    Google Scholar 

  20. Steytler, D.C., Dore, J.C. and Wright, C.J., J. Phys. Chem. 87 2458–2459 (1983).

    Google Scholar 

  21. Chen, S-H., Proc. of the NATO Adv. Study Inst. on Hydrogen-Bonded Liquids, p289–295 (ed. J.C. Dore and J. Teixeira, Kluwer Academic Publishers, 1991 ).

    Google Scholar 

  22. Marechal, Y., J. Chem. Phys. 95, 5565–5573 (1991).

    Article  ADS  Google Scholar 

  23. Li, J-C., Bennington, S.M., Benham, M.J., Ross, D.K. and Tomkinson, J., lOP Conference Series 101, 109–118 (J. W. Arrowsmith Ltd, Bristol, 1990 ).

    Google Scholar 

  24. Etzler, F.M. and Drost-Hanson, W., CROATICA CHEMICA ACTA 56, 563–592 (1983).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Li, J., Ross, D.K. (1994). The Role of H-Bond in the Formation of Ices. In: Bellissent-Funel, MC., Dore, J.C. (eds) Hydrogen Bond Networks. NATO ASI Series, vol 435. Springer, Dordrecht. https://doi.org/10.1007/978-94-015-8332-9_5

Download citation

  • DOI: https://doi.org/10.1007/978-94-015-8332-9_5

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-4412-9

  • Online ISBN: 978-94-015-8332-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics