Skip to main content

Physical Origin and Biological Significance of Solvent Induced Forces

  • Chapter
Hydrogen Bond Networks

Part of the book series: NATO ASI Series ((ASIC,volume 435))

Abstract

The notion of solvent-induced forces (SIFs), as distinct from solute-solute forces acting through the solvent, is illustrated in terms of: i) the microscopic space-and time-resolved view provided by Molecular Dynamics Simulations; ii) the standard statistical-mechanical formulation, and iii) the inherent structures of water. It is shown that the origin of SIFs is in the non-additivity of the effects of solute-perturbation on the H-bond network in the solvent. This nonadditivity does not require non-additivity of water-water and solute-water interaction potentials. Two experimental studies, illustrating different aspects of SIFs are discussed in detail. One is the case of Human Adult Hemoglobin, where the SIFs contribution to the functional conformational transition has been quantitatively determined. In this case, SIFs have the localized and specific character required for biomolecular stability and function. The large number of water molecules involved in these SIFs provides the additional and philosophically important result of a great expansion of the phase space relevant to the thermodynamic probability of functional conformations. Another case is the gelation of Bovine Serum Albumin. Here SIFs have a mean-field behaviour, and contribute to the first break of symmetry in the sol, towards self-assembly. In this way SIFs contribute establishing solute-solute correlations and generating preferential paths, which channel the percolation of crosslinks along polymer-rich regions. By this symmetry-breaking mechanism, SIFs can allow gelation at very low polymer concentrations and, more in general, they can be highly relevant to morphogenesis. Experiments on non-additivity of effects of solvent perturbation promoted by alcohols and by osmolytes are also presented. Results allow tracing the origin of the effects of cosolutes in modulating SIFs and solvent-mediated interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Franks, F. (ed.) (1975–1985) Water: a Comprehensive Treatise,Plenum Press, New York.

    Google Scholar 

  2. Fisher, I.Z. (1964) Statistical Theory of Liquids, University Chicago Press, Chicago.

    Google Scholar 

  3. Eisenberg, D., Kauzmann, W. (1960) The Structure and Properties of Water, Clarendon Press, Oxford.

    Google Scholar 

  4. Stillinger, F.H. (1980) ‘Water Revisited’, Science 209, 451–457.

    Article  ADS  Google Scholar 

  5. Stillinger, F.H. (1988) ‘Supercooled Liquids, Glass Transitions, and the Kauzmann Paradox’, J. Chem. Phys. 88, 7818.

    Article  ADS  MathSciNet  Google Scholar 

  6. Weber, T.A., Stillinger, F.H. (1984) ‘The Effect of Density On the Inherent Structure in Liquids’, J. Chem. Phys. 80, 2742–2746.

    Article  ADS  Google Scholar 

  7. Head-Gordon, T., Stillinger, F.H. (1993) ‘An Orientational Perturbation Theory for Pure Liquid Water’, J. Chem. Phys. 98, 3313–3327.

    Article  ADS  Google Scholar 

  8. Corongiu, G. (1992) ‘Molecular Dynamics Simulations for Liquid Water Using a Polarizable and Flexible Potential’, Int’l J. Quantum Chem. 42, 1209–1235.

    Article  Google Scholar 

  9. Corongiu, G., Clementi, E. (1993) ‘Molecular-Dynamics Simulations With a Flexible and Polarizable Potential: Density of States for Liquid Water At Different Temperatures’, J. Chem. Phys. 98, 49844990 and in Ref. 10, p. 15.

    Google Scholar 

  10. Palma, M.U., Parak, F. and Palma-Vittorelli, M.B. (eds.) (1993) Water-Biomolecule Interactions, Conference Proceedings Series of the Italian Physical Society, vol. 43, Editrice Compositori, Bologna.

    Google Scholar 

  11. Rupley, J.A., Careri, G. (1991) ‘Protein Hydration and Function’, Adv. Protein Chem. 41, 37–172 and refs. therein.

    Google Scholar 

  12. V.A. Parsegian, R.P. Rand and D.C. Rau (1992) ‘Swelling from the Perspective of Molecular Assemblies and Single Functioning Biomolecules’, in Karalis, T.K. (ed.), Mechanics of Swelling: from Clays to Living Cells and Tissues, Nato ASI Series, Vol. H 64, (Springer-Verlag, Berlin-Heidelberg), pp. 623–645 and refs. therein; Leikin, S., Rau, D. and Parsegian, V.A. (1991) ‘Measured Entropy and Enthalpy of Hydration As a Function of Distance Between DNA Double Helices’, Phys. Rev. A 44, 5272–5278.

    Google Scholar 

  13. J. Israelachvili (1987) ‘Solvation Forces and Liquid Structure, as Probed by Direct Force Measurements’, Acc. Chem. Res. 20, 415–421.

    Article  Google Scholar 

  14. Bruni, F. (1993) ‘Water Domains and Cytoplasmic Glass in Anhydrobiotic Organisms’, in Ref. 10, pp. 173–180.

    Google Scholar 

  15. S. H. Koenig in: “Water in Polymers”, S. P. Rowland (ed.), A.C.S. Symp. Ser., 127, p. 157, Am. Chem. Soc., Washington D.C. (1980).

    Google Scholar 

  16. Fornili, S.L., Bruge, F. (1993) ‘Solvent-Induced Forces Between Hydrophilic Model Solutes: A Molecular Dynamics Study’, in Ref. 10, pp. 63–70.

    Google Scholar 

  17. Bruge’, F., Camalleri, M., Mule’, L., Fornili, S.L. and Palma-Vittorelli, M.B. (1993) ‘A Time-Resolved Molecular Dynamics Study of Solvent-Induced Forces’, in Ref. 10, pp. 71–74.

    Google Scholar 

  18. F. Bruge’: PhD Thesis, Palermo (1992).

    Google Scholar 

  19. F. Bruge’, S.L. Fornili and M.B. Palma-Vittorelli, to be submitted.

    Google Scholar 

  20. Ben-Naim, A. (1980) Hydrophobic interactions, Plenum Press, New York.

    Book  Google Scholar 

  21. Palma-Vittorelli, M.B., Bulone, D., San Biagio, P.L. and Palma, M.U. (1993) ‘Studies of Biologically Significant Solvent Induced Forces’, in Ref. 10, pp. 253–260.

    Google Scholar 

  22. Malenkov, G.G. (1993) ‘F-Structures of Hydrogen Bonded Water Clusters’, in Ref. 10, pp. 37–40.

    Google Scholar 

  23. Naberukhin, Y.U., Voloshin, V.P. and Luchnikov, V.A. (1993) ‘Inherent Structure of the Molecular Dynamics Model of Water’, in Ref. 10, pp. 3–6.

    Google Scholar 

  24. Ohmine, I. (1993) ‘Inherent Structure Analysis for Liquid Water Dynamics’, in Ref. 10, pp. 7–14, and refs. therein.

    Google Scholar 

  25. Bulone, D., San Biagio, P.L., Palma-Vittorelli, M.B. and Palma, M.U. (1993) ‘Water-Mediated Interactions of Biosolutes: Aspects of Dynamics, Structure, and Configuration Life-Time of the Solvent’, J. Mol. Liq. in press,.

    Google Scholar 

  26. Palma, M.U., Parak, F. and Palma-Vittorelli, M.B. (1993) ‘Foreword’, in Ref. 10, pp. XIX-XXIL

    Google Scholar 

  27. Tanaka, H., Ohmine, I. (1987) ‘Large Local Energy Fluctuations in Water’, J. Chem. Phys. 87, 61286139; Tanaka, H., Ohmine, I. (1989) ‘Potential Energy Surfaces for Water Dynamics: Reaction Coordinates, Transition States, and Normal Mode Analysis’, J. Chem. Phys. 91, 6318–6327; Ohmine, I., Tanaka, H. (1990) ‘Potential Energy Surfaces for Water Dynamics. II. Vibrational Mode Excitations, Mixing and Relaxations’, J. Chem. Phys. 93, 8138–8147.

    Google Scholar 

  28. Zhou, H.-X., Zwanzig, R. (1991) ‘A Rate Process With an Entropy Barrier’, J. Chem. Phys. 94, 61476152.

    Google Scholar 

  29. Bulone, D., Spinnato, C., Madonia, F. and Palma, M.U. (1989) ‘Viscosity of Aqueous Solutions of Monohydric Alcohols in the Normal and Supercooled States’, J. Chem. Phys. 91, 408–415.

    Article  ADS  Google Scholar 

  30. Bulone, D., Donato, I.D., Palma-Vittorelli, M.B. and Palma, M.U. (1991) ‘Density, Structural Lifetime, and Entropy of H-Bond Cages Promoted By Monohydric Alcohols in Normal and Supercooled Water’, J. Chem. Phys. 94, 6816–6826.

    Article  ADS  Google Scholar 

  31. Bulone, D., Donato, I.D., Palma-Vittorelli, M.B. and Palma, M.U. (1993) ‘Solvent-Perturbation By Simple Model Solutes: The Case of Monohydric Alcohols’, in Ref. 10, pp. 45–48.

    Google Scholar 

  32. Bulone, D., Palma-Vittorelli, M.B. and Palma, M.U. (1992) ‘Enthalpic and Entropic Contributions of Water Molecules to the Functional T-R Transition of Human Hemoglobin in Solution’, Int’l J. Quantum Chem. 42, 1427–1437.

    Article  Google Scholar 

  33. San Biagio, P.L., Bulone, D., Palma-Vittorelli, M.B. and Palma, M.U. (1993) ‘Microscopic and Large-Scale Effects of Solvent-Induced Forces On Human Hemoglobin’, in Ref. 10, pp. 151–154.

    Google Scholar 

  34. Bulone, D., San Biagio, P.L., Palma-Vittorelli, M.B. and Palma, M.U. (1993) ‘On the Role of Water On Hemoglobin Function and Stability’, Science 259, 1335–1336.

    Article  ADS  Google Scholar 

  35. Antonini, E., Brunori, M. (1971) Hemoglobin and Myoglobin in Their Reactions with Ligands, North-Holland, Amsterdam.

    Google Scholar 

  36. Perutz, M.F., Fermi, G., Luisi, B., Shaanan, B. and Lidd, X. (1987) ‘Stereochemistry of Cooperative Mechanisms in Hemoglobin’, Acc. Chem. Res. 20, 309.

    Article  Google Scholar 

  37. Chothia, C., Wodak, S., Janin, J. (1976) ‘Role of Subunit Interfaces in the Allosteric Mechanism of Hemoglobin’, Proc. Natl. Acad. Sci. USA 73, 3793–3797.

    Article  ADS  Google Scholar 

  38. Cordone, L., Cupane, A. and Vitrano, E. (1989) ‘Conformational and Functional Properties of Hemoglobin in Perturbed Solvent: Relevance of Electrostatic and Hydrophobic Interactions’, J. Mol. Liq. 42, 213–229.

    Article  Google Scholar 

  39. Cordone, L., Cupane, A., San Biagio, P.L. and Vitrano, E. (1981) ‘Temperature Dependence of the Effects of Some Monohydric Alcohols On the Oxygen Affinity of Hemoglobin: Determination and Analysis of Thermodynamic Parameters’, Biopolymers 20, 53–63.

    Article  Google Scholar 

  40. Hellwege, K.H. (1976) Landoll Bornstein: Zahlenwerte und Functionen New Series, Springer, Berlin.

    Google Scholar 

  41. Westmeier, S. (1976) ‘Exzebenthalpies, Freie Exzebenthalpies, Exzebvolumen Und Viskositat Von Ausgewahltenbinaren Flussigen Mischungen’, Chem. Techn. 28, 350.

    Google Scholar 

  42. Colombo, M.F., Rau, D.C. and Parsegian, V.A. (1992) ‘Protein Solvation in Allosteric Regulation: A Water Effect On Hemoglobin’, Science 256, 655–659.

    Article  ADS  Google Scholar 

  43. Values presented here for AHc and ASc are slightly different (about 10%) from those used for similar preliminary evaluations in ref. 32. Here, we have taken advantage of more complete data now available, particularly on excess specific heat, and we have taken into account a small contribution of the OH group of alcohols to the entropy, neglected in ref. 32. These minor differences in the solvent contribution to AHT-,R and AST-,R have a rather larger effect on AGT-,R. The present evaluation of the solvent contribution to AGT.R, about 30% different from that given in ref. 37, must be considered as more reliable. Qualitative aspects of the conclusions concerning the dominant role of SIFs are not affected by the improved data.

    Google Scholar 

  44. Imai, K. (1979) ‘Thermodynamic Aspects of the Cooperativity in Four-Step Oxygenation Equilibriums of Hemoglobin’, J. Mol. Biol. 133, 233–247.

    Article  Google Scholar 

  45. Parak, F., Hartmann, H., Schmidt, M. and Corongiu, G. (1993) ‘The Hydration of Myoglobin Molecules’, in Ref. 10, pp. 115–122.

    Google Scholar 

  46. V. Martorana, G. Corongiu and M.U. Palma, work in progress.

    Google Scholar 

  47. Yancey, P.H., Clark, M.E., Hand, S.C., Bowlus, R.D. and Somero, G.N. (1982) ‘Living With Water Stress: Evolution of Osmolyte Systems’, Science 217, 1214.

    Article  ADS  Google Scholar 

  48. Arakawa, T., Timasheff, S.N. (1985) ‘The Stabilization of Proteins By Osmolytes’, Biophysical J. 47, 411–414.

    Article  ADS  Google Scholar 

  49. Montagnino, F.M., Noto, R., Bulone, D., Martorana, V., Fornili, S.L. and Palma-Vittorelli, M.B. (1993) ‘Solvent-Perturbation By Simple Model Solutes: The Puzzle of TMAO’, in Ref. 10, pp. 49–52.

    Google Scholar 

  50. Dupuis, M., Farazdel, A., Karna, S.P. and Maluendes, S.A. (1990) ‘HONDO: A General Atomic and Molecular Electronic Structure System’, in Clementi, E. (ed.), MOTECC 1990: Modern Techniques in Computational Chemistry,ESCOM, Leiden,, pp. 277–342.

    Google Scholar 

  51. Burchard, W., Ross-Murphy, S.B. (1988) Physical Networks, Elsevier, London.

    Google Scholar 

  52. de Gennes, P.G. (1979) Scaling Concepts in Polymer Physics, Cornell University Press, Ithaca, NY.

    Google Scholar 

  53. Kurata, M. (1982) Thermodynamics of Polymer Solutions, Harwood Academic Publishers, Chur, NY.

    Google Scholar 

  54. Clark, A.H., Ross-Murphy, S.B. (1987) ‘Structural and Mechanical Properties of Biopolymers Gels’, Adv. Polym. Sci. 83, 57–192.

    Article  Google Scholar 

  55. Mitchell, J.R., Ledward, D.A. (1985) Functional Properties of Food Macromolecules, Elsevier, London.

    Google Scholar 

  56. Flory, P.J. (1953) Principles of Polymer Chemistry, Cornell University Press, Ithaca, NY.

    Google Scholar 

  57. Scholte, T.G. (1971) ‘Thermodynamic Parameters of Polymer Solvent System from Light Scattering Measurements Below the Theta Temperature’, J. Polym. Sci. A2–9, 1553–1557.

    Google Scholar 

  58. Cahn, J.W. (1965) ‘Phase Separation By Spinodal Decomposition in Isotropic Systems’, J. Chem. Phys. 42, 93–99.

    Article  ADS  Google Scholar 

  59. San Biagio, P.L., Madonia, F., Newman, J. and Palma, M.U. (1986) ‘Sol-Sol Structural Transition of Aqueous Agarose System’, Biopolymers 25, 2255–2269.

    Google Scholar 

  60. Leone, M., Sciortino, F., Migliore, M., Fornili, S.L. and Palma Vittorelli, M.B. (1987) ‘Order Parameters of Gels and Gelation Kinetics of Aqueous Agarose Systems: Relation to the Spinodal Decomposition of the Sol’, Biopolymers 26, 743–761.

    Article  Google Scholar 

  61. San Biagio, P.L., Newman, J., Madonia, F. and Palma, M.U. (1989) ‘Co-Solute Control of the Self-Assembly of a Biopolymeric Supramolecular Structure’, Chem. Phys. Letters 154, 477.

    Google Scholar 

  62. San Biagio, P.L., Bulone, D., Emanuele, A., Madonia, F., Di Stefano, L., Giacomazza, D., Trapanese, M., Palma-Vittorelli, M.B. and Palma, M.U. (1990) ‘Spinodal Demixing, Percolation and Gelation of Biostructural Polymers’, Makromol. Chem., Macromol. Symp. 40, 33–44.

    Article  Google Scholar 

  63. Emanuele, A., Di Stefano, L., Giacomazza, D., Trapanese, M., Palma-Vittorelli, M.B. and Palma, M.U. (1991) ‘Time-Resolved Study of Network Self-Organization from a Biopolymeric Solution’, Biopolymers 31, 859–868.

    Article  Google Scholar 

  64. Bulone, D., San Biagio, P.L. (1991) ‘Microgel Regions in Dilute Agarose Solutions: The Notion of Non-Gelling Concentration, and the Role of Spinodal Demixing’, Chem. Phys. Letters 179, 339–343.

    Article  ADS  Google Scholar 

  65. Emanuele, A., Palma-Vittorelli, M.B. (1992) ‘Time-Resolved Experimental Study of Shear Viscosity in the Course of Spinodal Demixing’, Phys. Rev. Letters 69, 81–84.

    Article  ADS  Google Scholar 

  66. Emanuele, A. (1992) ‘Il Processo di Ordinamento Sovramolecolare di Biopolimeri in Soluzione, Studiato nel Quadro dei Fenomeni Critici’, PhD Thesis.

    Google Scholar 

  67. Emanuele, A., Aufiero, F., San Biagio, P.L., Bruge, F., Bulone, D., Fornili, S.L., Palma-Vittorelli, M.B. and Palma, M.U. (1993) ‘Large-Scale and Specific Effects of Solvent-Induced Forces: Symmetry Breaking and Self-Assembly’, in Ref. 10, pp. 215–218.

    Google Scholar 

  68. San Biagio, P.L., Bulone, D., Emanuele, A., Palma-Vittorelli, M.B. and Palma, M.U. (1993) ‘Spontaneous Symmetry-Breaking Pathways: Time-Resolved Study of Agarose Gelation’, International Workshop on “Functional Properties of Polysaccharides”, Kyoto, Japan (to appear on Food Hydrocolloids).

    Google Scholar 

  69. San Biagio, P.L., Palma, M.U. (1991) ‘Spinodal Lines and Flory-Huggins Free-Energies for Solutions of Human Hemoglobin HbS and HbA’, Biophysical J. 60, 508–513.

    Article  Google Scholar 

  70. San Biagio, P.L., Palma, M.U. (1992) ‘Solvent-Induced Forces, and Fluctuations: A Novel Comparison of Human Hemoglobin S an A’, Comm. Theor. Biol. 2, 453–470.

    Google Scholar 

  71. Sciortino, F., Palma, M.U., Urry, D.W. and Prasad, K.U. (1988) ‘Nucleation and Accretion of Bioelastomeric Fibers at Biological Temperatures and Low Concentrations’, Biochem. Biophys. Res. Comm. 157, 1061–1066.

    Article  Google Scholar 

  72. Sciortino, F., Urry, D.W., Palma, M.U. and Prasad, K.U. (1990) ‘Self-Assembly of a Bioelastomeric Structure: Solution Dynamics and the Spinodal and Coarcevation Lines’, Biopolymers 29, 1401.

    Article  Google Scholar 

  73. Sciortino, F., Prasad, K.U., Urry, D.W. and Palma, M.U. (1988) ‘Spontaneous Concentration Fluctuations Initiate Bioelastogenesis’, Chem. Phys. Letters 153, 557–559.

    Article  ADS  Google Scholar 

  74. Sciortino, F., Prasad, K.U., Uny, D.W. and Palma, M.U. (1993) ‘Self-Assembly of Bioelastomeric Structures from Solutions: Mean-Field Critical Behavior and Flory-Huggins Free Energy of Interactions’, Biopolymers 33, 743–752.

    Article  Google Scholar 

  75. Bulone, D., San Biagio, P.L., Palma-Vittorelli, M.B. and Palma, M.U. (1993) ‘On the Self-Assembly of Biopolymeric Networks’, International Symposium on “Polymer Gels and Networks”, Tsukuba, Japan (to appear on Polymer Gels and Networks).

    Google Scholar 

  76. Barone, G., Giancola, C. and Verdoliva, A. (1992) ‘DSC Studies On the Denaturation and Aggregation of Serum Albumins’, Thermochim. Acta 199, 197–205; G. Barone, P. Del Vecchio, D. Fessas, C. Giancola, G. Graziano, A. Riccio and P. Tramonti, to be published.

    Google Scholar 

  77. Guo, X.H., Chen, S.H. (1990) ‘Observation of Polymerlike Phase Separation of Protein-Surfactant Complexes in Solution’, Phys. Rev. Lett. 64, 1979–1982.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Palma, M.U., Biagio, P.L.S., Bulone, D., Palma-Vittorelli, M.B. (1994). Physical Origin and Biological Significance of Solvent Induced Forces. In: Bellissent-Funel, MC., Dore, J.C. (eds) Hydrogen Bond Networks. NATO ASI Series, vol 435. Springer, Dordrecht. https://doi.org/10.1007/978-94-015-8332-9_44

Download citation

  • DOI: https://doi.org/10.1007/978-94-015-8332-9_44

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-4412-9

  • Online ISBN: 978-94-015-8332-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics