Skip to main content

Simulation of Liquid Mixtures

  • Chapter
Book cover Hydrogen Bond Networks

Part of the book series: NATO ASI Series ((ASIC,volume 435))

  • 408 Accesses

Abstract

Computer simulations have been used extensively to study liquid mixtures, especially mixtures of polar liquids, and have been able to provide a wealth information on these systems. Mixtures of molecular liquids, where one of the components is water, have naturally received a great deal of attention in these studies. This Chapter reviews the results of simulations carried out on water-methanol mixtures with flexible vibrating molecular models. The structure of mixtures will be discussed on the basis of various pair correlation and autocorrelation functions. The results of simulations will be compared with diffraction data. Information on several excess properties and associates will be evaluated in some detail. A special attention will be given to the concept of network formation both in methanol, in water and in their mixtures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A.Luzar and D.Chandler, J.Chem.Phys. 98, 8160 (1993)

    Article  ADS  Google Scholar 

  2. M. Ferrario, M. Haughney, I.R. McDonald and M.L. Klein J.Chem.Phys. 93, 5156 (1990)

    Article  ADS  Google Scholar 

  3. H.Tanaka and K.E.Gubbins, J.Chem.Phys, 97, 2626 (1992)

    Article  ADS  Google Scholar 

  4. G.Pâlinkas, E.Hawlicka and K.Heinzinger, Chem.Phys. 158, 65 (1991)

    Article  Google Scholar 

  5. G.Pdlinkâs, I.Bakó,K.Heinzinger, P.Bopp, Mol.Phys. 73, 897 (1991)

    Article  ADS  Google Scholar 

  6. W.L.Jorgensen, and J.Madura, J.Am.Chem.Soc. 105, 1407 (1983)

    Article  Google Scholar 

  7. S.Okazaki, H.Touhara and K.Nakanishi, J.Chem.Phys. 81, 890 (1984)

    Article  ADS  Google Scholar 

  8. G.Bolis, G.Coringiu and E.Clementi, Chem.Phys.Letters 86, 299 (1981)

    Article  ADS  Google Scholar 

  9. S.Westmeier, Chem.Techn.Leipzig, 28, 350 (1976)

    Google Scholar 

  10. G.Onori, J.Chem.Phys. 87, 1251 (1987)

    Article  ADS  Google Scholar 

  11. L.A.Staveley, K.R.Hart and W.I.Tupman, Discuss.Faraday Soc. 156, 130 (1953)

    Article  Google Scholar 

  12. W.Reinschussel and E.Hawlicka, Radiochemica Acta 31, 157 (1982)

    Google Scholar 

  13. G.Onori, Nuovo Cim. 90, 507 (1987)

    ADS  Google Scholar 

  14. G.Onori, Chem.Phys.Lett. 154, 212 (1989)

    Article  ADS  Google Scholar 

  15. D.Bertoloni, M.Casettari and G.Salvetti, J.Phys.Chem. 78, 365 (1983)

    Article  Google Scholar 

  16. H.Endo, Bull. Chem.Soc. Japan 46, 1586 (1973)

    Article  Google Scholar 

  17. R.Parshad, J. Acoust. Soc.Amer. 20, 60 (1948)

    Google Scholar 

  18. G.H.Andreae, P.D.Edmons and J.F.McKellar, Acustica 46, 74 (1965)

    Google Scholar 

  19. G.Jancsó, P.Bopp and K.Heinzinger, Chem.Phys. 85, 377 (1984)

    Article  Google Scholar 

  20. G.Pâlinkâs, E.Hawlicka and K.Heinzinger, J.Phys.Chem. 91, 4334 (1987)

    Article  Google Scholar 

  21. G.D.Carney, L.A.Curtiss and S.R. Langhoff, J.Mol.Spectr. 61, 371 (1976)

    Article  ADS  Google Scholar 

  22. A.Timidei and G.Zerbi, Z.Naturforsch. 25a, 1729 (1970)

    ADS  Google Scholar 

  23. W.L.Jorgensen, J.Phys.Chem. 90, 1276 (1986)

    Article  Google Scholar 

  24. S.Okazaki, K.Nakanishi and H.Touhara, J.Chem.Phys. 78, 454 (1983)

    Article  ADS  Google Scholar 

  25. V.C.Tse, M.D.Newton and L.C.Allen, Chem.Phys.Letters 75, 350 (1980)

    Article  ADS  Google Scholar 

  26. S.Kim, M.S.Jhon and H.A. Scheraga, J.Phys.Chem. 92, 7216 (1988)

    Article  Google Scholar 

  27. P.H.Behrens, H.J.Mackay, G.M.White and K.R.Wilson J.Chem.Phys. 79, 2375 (1983)

    Article  ADS  Google Scholar 

  28. M.G. Sceats and S.A Rice J.Chem.Phys. 72,3236 (1980)

    Article  ADS  Google Scholar 

  29. P.Bopp, G.Jancsó and K.Heinzinger, Chem.Phys.Lett. 98, 377 (1984)

    Google Scholar 

  30. I.Bakó, G.Pâlinkâs and K.Heinzinger to be published

    Google Scholar 

  31. A.Geiger, F.H.Stillinger and A.Rahman, J.Chem.Phys. 70, 4185 (1972)

    Article  ADS  Google Scholar 

  32. A. Geiger and P. Mausbach in Hydrogen-Bonded Liquids, ed. J.C.Dore and J. Teixeira, Kluwer Publishers, Netherland (1991)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Pálinkás, G., Heinzinger, K. (1994). Simulation of Liquid Mixtures. In: Bellissent-Funel, MC., Dore, J.C. (eds) Hydrogen Bond Networks. NATO ASI Series, vol 435. Springer, Dordrecht. https://doi.org/10.1007/978-94-015-8332-9_28

Download citation

  • DOI: https://doi.org/10.1007/978-94-015-8332-9_28

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-4412-9

  • Online ISBN: 978-94-015-8332-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics