Skip to main content

Low Frequency Raman Spectra in Water by Normal Mode Analysis

  • Chapter
Hydrogen Bond Networks

Part of the book series: NATO ASI Series ((ASIC,volume 435))

  • 411 Accesses

Abstract

The Raman spectrum of water in the translational frequency regime has been interpreted in terms of the localized vibrational density of states and, in seeming contradiction, (ii) in terms of contributions of long-range dipole induced dipole (DID) reactions. We show that these two interpretations are consistent by calculating the Raman spectrum from the ormal modes of the inherent liquid structures. We obtain the DID Raman spectra from linear contributions of each individual mode, and show that the aggregate spectrum obtained is in good agreement with both the DID spectrum obtained directly from a molecular dynamics simulation and the spectrum obtained by simulating harmonic dynamics (i.e., exciting all the modes at once and calculating the DID spectrum from the resulting dynamical trajectory of the system).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Walrafen, G., in Water: A Comprehensive Treatise, Vol. I, F. Franks, ED.(Plenum, NY 1972 )

    Google Scholar 

  2. Walrafen, M.S. Hokambadi, and W.-H. Yang, J. Chem. Phys. 85, 6970 (1986)

    Article  ADS  Google Scholar 

  3. Krishnamurthy S., Bansil R. and Wiafe-Akenten J., J. Chem. Phys. 79, 5863 (1983).

    Article  ADS  Google Scholar 

  4. Benassi, P. Mazzacurati, V., Nardone, M. A. Ricci, Ruocco, G., De Santis,G., Frattini, R. and Sampoli, M, Mol. Phys. 62, 1467 (1987).

    Article  ADS  Google Scholar 

  5. Madden, P. A. and Impey, R. W., Chem. Phys. Lett. 123, 502 (1986).

    Article  ADS  Google Scholar 

  6. Bansil R., Berger T., Toukan K., Ricci M. A. and Chen S. H., Chem. Phys. Lett. 132, 165 (1986).

    Article  ADS  Google Scholar 

  7. Frattini R. Sampoli M., Ricci M. A. and Ruocco G., Chem. Phys. Letts. 141, 297 (1987).

    Article  ADS  Google Scholar 

  8. Ricci, M. A., Ruocco G., Sampoli M., Mol. Phys. 67, 19 (1989).

    Article  ADS  Google Scholar 

  9. Mazzacurati V., Ricci M.A., Ruocco G. and Sampoli M., Chem. Phys. Letts. 159, 383 (1989).

    Article  ADS  Google Scholar 

  10. Sciortino, F. and Corongiu, G., Mol. Phys. 79, 547 (1993).

    Article  ADS  Google Scholar 

  11. Stillinger, F. H. and Weber, T. A., Phys. Rev. A 25, 978 (1982)

    Article  ADS  Google Scholar 

  12. Stillinger, F. H. and Weber, T. A., J. Phys. Chem. 87, 2833 (1983)

    Article  Google Scholar 

  13. Weber, T. A. and Stillinger, F. H., J. Chem. Phys. 80, 2742 (1984).

    Article  ADS  Google Scholar 

  14. Sciortino, F., Geiger, A. and Stanley, H. E., Phys. Rev. Lett. 65, 3452 (1990).

    Article  ADS  Google Scholar 

  15. Jorgensen, W. L., Chandrasekhar, J., Madura, J. D., Impey, R. W., & Klein, M. L. J. Chem. Phys. 79, 926 (1983).

    Article  ADS  Google Scholar 

  16. Berendsen, H. J. C., Potsma, J. P. M., van Gunsteren, W. F., DiNola, A. and Haak, J. R., J. Chem. Phys 81, 3684 (1984).

    Article  ADS  Google Scholar 

  17. Sastry, S., Stanley, H. E., and Sciortino, F. (submitted to J. Chem. Phys.

    Google Scholar 

  18. De Lorenzi A., De Santis A., Frattini R. and Sampoli M., Phys. Rev. A 33, 3900 (1986).

    Article  ADS  Google Scholar 

  19. Murphy W. F., J. Chem. Phys. 67, 5877 (1977).

    Article  ADS  Google Scholar 

  20. Madan, B., Keyes, T. and Seeley, G., J. Chem. Phys. 92, 7565 (1990)

    Article  ADS  Google Scholar 

  21. Madan, B., Keyes, T. and Seeley, G., J. Chem. Phys. 94, 6762 (1991).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Sastry, S., Stanley, H.E., Sciortino, F. (1994). Low Frequency Raman Spectra in Water by Normal Mode Analysis. In: Bellissent-Funel, MC., Dore, J.C. (eds) Hydrogen Bond Networks. NATO ASI Series, vol 435. Springer, Dordrecht. https://doi.org/10.1007/978-94-015-8332-9_19

Download citation

  • DOI: https://doi.org/10.1007/978-94-015-8332-9_19

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-4412-9

  • Online ISBN: 978-94-015-8332-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics