Advertisement

Ontologic Versus Epistemologic: Some Strands in the Development of Logic, 1837–1957

  • Göran Sundholm
Chapter
Part of the Synthese Library book series (SYLI, volume 236)

Abstract

Traditionally the subject matter of logic comprised judgements and inferences, that is, the products of certain (mental) acts. Indeed, Thomas Aquinas even characterized logic as the study of terms in ‘the second intention’, that is, such terms that themselves have mental entities as their intention, examples being the term ‘term’, the term ‘judgement’ and the term ‘inference’. Today, on the other hand, authoritative elementary text books in Logic make no mention of products of mental acts: the acting logical subject that has to draw the inferences in question has, as it were, been squeezed out of the province of logic.

Keywords

Natural Language Mathematical Object Propositional Content Mental Entity Mathematical Proposition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Methods of Logic, Holt and Co., N.Y. 1950, p. vii.Google Scholar
  2. 4.
    The following schema is based on one in J. Maritain, An Introduction to Logic, Sheol and Ward, London 1946, pp. 6–7.Google Scholar
  3. 5.
    Grundgesetze der Arithmetik, Vol I, §2, Jena 1893.Google Scholar
  4. 6.
    Der Gedanke’, Beiträge zur Philosophie der deutschen Idealismus, 1 (1918–19), pp. 58–77.Google Scholar
  5. 7.
    A. N. Whitehead and B. Russell, Principia Mathematica, Vol. 1, Cambridge U.P., 1910.Google Scholar
  6. 8.
    Proc. Arist. Soc., N.S.,V III (1907–8), pp.33–78.Google Scholar
  7. 9.
    Over de onbetrouwbaarheid der logische principes’, Tijdschrift voor Wijsbegeerte 2 (1908), pp. 152–158.Google Scholar
  8. 10.
    L. Wittgenstein, Tractatus Logico-philosophicus, Routledge and Kegan Paul, London, 1922, and A. Heyting, ‘Die intuitionistische Grundlegung der Mathematik’, Erkenntnis 2 (1931), pp. 106–115.CrossRefGoogle Scholar
  9. 11.
    K. Mulligan, P. Simons, and B. Smith, ‘Truth-Makers’, Philosophy and Phenomenological Research XLIV (1984), pp. 287–231.Google Scholar
  10. 12.
    See, for example, Intuitionistic Type Theory, Bibliopolis, Naples, 1984.Google Scholar
  11. 13.
    Der Wahrheitsbegriff in den formalisierten Sprachen’, Studia Philosophica 1 (1936), pp. 261–405.Google Scholar
  12. 14.
    The Mathematical Analysis of Logic, reprint, Basil Blackwell, Oxford 1948.Google Scholar
  13. 15.
    Vorlesungen über die Algebra der Logik,Vols. 1–3, reprint Chelsea, N.Y. 1966.Google Scholar
  14. 16.
    Cf.G. Frege, ‘Kritische Beleuchtung einiger Punkte in E. Schröders Vorlesungen über die Algebra der Logik’, Archiv für systematische Philosophie, 1 (1895), pp. 433–456.Google Scholar
  15. 17.
    Arithmetical Extensions of Relational Systems’, Compositio Mathematica 13 (1957), pp. 81–102.Google Scholar
  16. 18.
    In Descartes. The Project of Pure Inquiry, Penguin, Harmondsworth, 1978.Google Scholar
  17. 19.
    Analytical Theory of Knowledge, C.U.P., 1968, p. x.Google Scholar
  18. 20.
    Erste Einleitung in die Wissenschaftslehre’, Philosophisches Journal, V (1797), 1–47.Google Scholar
  19. 21.
    Heinrich Scholz (t) and Gisbert Hasenjaeger, Grundzüge der Mathematischen Logik, Springer, Berlin, 1961, Einleitung, pp. 11–12.Google Scholar
  20. 22.
    The Philosophy of Bertrand Russell (third edition), P.A. Schilpp (ed.), Tudor Publ. Co., N.Y., 1951, p. 682.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1994

Authors and Affiliations

  • Göran Sundholm
    • 1
  1. 1.Faculty of PhilosophyUSA

Personalised recommendations