Mathematical Reasoning and Pragmatism in Peirce

  • Gerhard Heinzmann
Part of the Synthese Library book series (SYLI, volume 236)


In Peirce’s theory of cognition, the pragmatic maxim is the means used by reflection to connect signs with objects. The pragmatic maxim, in a formulation of 1878, taken up again in 1905, reads:

“Consider what effects that might conceivably have practical bearing you conceive the object of your conception to have. Then your conception of those effects is the whole of your conception of the object.”1


Axiomatic System Mathematical Reasoning Logical Classification Pure Possibility Semantical Purpose 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. CHAUVIRE, Christiane, 1987, Schématisme et analyticité chez C.S. Peirce. Archives de Philosophie 50, pp. 413–437.Google Scholar
  2. DEDEKIND, Richard, 1888, Was sind und was sollen die Zahlen? Braunschweig,Vieweg.Google Scholar
  3. ENGEL-TIERCELIN, Claudine, 1989, Peirce ou la version sémantique-sémiotique de la logique formelle. Cahier du Groupe de Recherches sur la Philosophie et le langage 10, Grenoble, pp. 39–71.Google Scholar
  4. HILPINEN, Risto, 1982, On C.S. Peirce’s Theory of the Proposition: Peirce as a Precursor of Game-Theoretical Semantics. The Monist 65, pp. 182–188.CrossRefGoogle Scholar
  5. HINTIKKA, K. Jaakko, 1973, Logic, Language-Games and Information. Kantian Themes of Logic, Oxford, Clarendon Press.Google Scholar
  6. HINTIKKA, K. Jaakko, 1980, C.S. Peirce’s “First Real Discovery” and its Contemporary Relevance. The Monist 63, pp. 304–315.CrossRefGoogle Scholar
  7. KETNER, Kenneth Laine, 1985, How Hintikka Misunderstood Peirce’s Account of Theorematic Reasoning. Transactions of the Charles S. Peirce Society 21, pp. 407–418.Google Scholar
  8. LEVY,Stephen Harry, 1982, A Comparative Analysis of Charles S. Peirce’s Philosophy of Mathematics, Diss., (Univ. Microfilms Int., Ann Arbor 1986, New York.Google Scholar
  9. LORENZ, Kuno, 1986, Dialogischer Konstruktivismus. In: Was ist Philosophie? (Hrsg. K. Salamun ), Tübingen, Mohr, pp. 335–352.Google Scholar
  10. PEANO, Giuseppe, 1889, Arithmetices principia, nova methodo exposita,Turin.Google Scholar
  11. PEIRCE, Charles Sanders, 1933–1958, Collected Papers (ed. Ch. Hartshorne/P. Weiss, Volume I-VI, Cambridge Mass., Belknap Press, (abbreviation: C.P.).Google Scholar
  12. PEIRCE, Charles Sanders, 1976, The New Elements of Mathematics, vol. I-V (ed. C. Eisele), The Hague/Paris/Atlantic Highlands, Mouton/Humanities Press (abbreviation: N.E.).Google Scholar
  13. SHIELDS, Paul Bartram, 1981, Charles S. Peirce on the Logic of Number, Diss., Fordham University (printed 1987 ).Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1994

Authors and Affiliations

  • Gerhard Heinzmann
    • 1
  1. 1.Université de Nancy IIFrance

Personalised recommendations