Skip to main content

Abstract

Quantitative model-based failure detection and isolation (FDI) methods rely on the comparison of a system’s available measurements, with a-priori information represented by the system’s mathematical model. The term quantitative is used here as contrary to the term qualitative, denoting cruder sustem descriptions. There are two main trends of this approach, namely analytical redundancy or residual-generation methods and parameter estimation. This distinction is not universally adopted and some researchers consider these two approaches as belonging to the same category. However, for reasons of clearer presentation the distinction is adopted here, and parameter estimation methods will be presented in Chapter 3.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Anderson T.W. (1958). An introduction to multivariate statistical analysis. John Wiley, N.Y.

    MATH  Google Scholar 

  • Antsaklis P.J. (1980). Maximal order reduction and supremal A, B invariant and controllability subspaces. IEEE Transactions on Automatic Control, AC-25, 44–49.

    Google Scholar 

  • Armstrong B. (1988). Friction: Experimental determination, modeling and compensation. Proceedings, IEEE International Conference on Robotics and Automation, Philadelphia.

    Google Scholar 

  • Athans M. and D. Willner (1973). A practical scheme for adaptive aircraft control systems. Symposium on Parameter Estimation Techniques and Applications in Aircraft Flight Testing, NASA Flight Research Center, Edwards AFB, April 24–25.

    Google Scholar 

  • Basseville M. (1981). Edge detection using sequential methods for change in level, Part I: A sequential edge detection algorithm. IEEE Transactions on Acoustics, Speech and Signal Processing, ASSP-29, 1, 32–50.

    Article  Google Scholar 

  • Basseville M. and A. Benveniste (1983). Design and comparative study of some sequential jump detection algorihms for digital signals. IEEE Transactions on Acoustics, Speech and Signal Processing, ASSP-31, 32–50.

    Google Scholar 

  • Basseville M. and A. Benveniste, Eds. (1986). Detection of abrupt changes in signals and dynamical systems. Springer-Verlag.

    Google Scholar 

  • Basseville M. and I. Nikiforov (1993). Detection of abrupt changes. Theory and application. Prentice Hall, Englewood Cliffs, N.J.

    Google Scholar 

  • Baram Y. (1976). Information, consistent estimation and dynamic system identification. Phd. Thesis, M.I.T.

    Google Scholar 

  • Beard R.V. (1971). Failure accomodation in linear systems through reorganisation. Rep. MVT-71–1, Man Vehicle Lab., M.I.T.

    Google Scholar 

  • Beattie E.C. et al. (1981). Sensor failure detection systems for the F100 turbofan engine. NASA CR-165515.

    Google Scholar 

  • Bickel, P.J. (1965). On some asymptotic competitors to Hotelling’s 72- The annals of Mathematical Statistics, 36, 16–173.

    Google Scholar 

  • Bonivento C. and A. Tonielli (1984). A detection—estimation multifilter approach with nuclear application. Proceedings, 9th IFAC World Congress, Budapest, Hungary, 1771–1776.

    Google Scholar 

  • Cho D.and J.K. Hedrick(1989). Automotive Power Train Modeling for Control. ASME Journal of Dynamic Systems, Measurement, and Control, 111, 568–576.

    Google Scholar 

  • Chow E.Y. (1980). A failure detection system design methodology. Phd. Thesis, M.I.T.

    Google Scholar 

  • Chow E.Y. and A.S. Willsky (1984). Analytical redundancy and the design of robust failure detection systems. IEEE Transactions on Automatic Control, AC-29, 603–614.

    Google Scholar 

  • Chien T.T. and M.B. Adams (1976). A sequential failure detection technique and its application. IEEE Transactions on Automatic Control, AC-21, 750–757.

    Google Scholar 

  • Clark R.N. (1978). A simplified instrument failure detection scheme. IEEE Transactions on Aerospace and Electronic Systems, AES-14, 4.

    Google Scholar 

  • Coats F.E. and R.D. Fruechte (1982). Dynamic Engine Models for Control Development. Part II: Application to Idle Speed Control. General Motors Research Laboratories Publication GMR-3789, January.

    Google Scholar 

  • Daley K.C., Gai E. and J.V. Harrison (1979). Generalised likelihood test’’for FDI in redundant sensor configurations. Journal of Guidance and Control, 2, 9–17.

    Article  Google Scholar 

  • Darenberg W. (1987). Automatische Spurfiihrung von Kraftfahrseugen–Ein Problem der robusten Regelung. Automobil Industrie, 2, 155–159.

    Google Scholar 

  • Deckert J.C., Desai M.N., Deyst, J.J. and A.S. Willsky (1977). F8 DFBW sensor failure identification using analytical redundancy, IEEE Transactions on Automatic Control, AC-22, 5, 795–803.

    Article  Google Scholar 

  • DeLaat J.C. and W.C. Merrill (1990). A real time microcomputer implementation of sensor failure detection for turbofan engines. IEEE CS Magazine, 10, 4, 29–36.

    Article  Google Scholar 

  • Desai M. and A. Ray (1981). A fault detection and isolation methodology. Proceedings, 20th Conference on Decision and Control, 1363–1369.

    Google Scholar 

  • Ding X. and P.M. Frank (1989). Komponentenfehler-detektion mittels auf Empfindlichkeitsanalyse basierender robuster detektionsfilter. Automatisierungstechnik,Oldenburg, Munich.

    Google Scholar 

  • Dobner D.J. (1982), Dynamic Engine Models for Control Development. Part I: Nonlinear and Linear Model Formulation. General Motors Research Laboratories Publication GMR-3783, January.

    Google Scholar 

  • Dowdle J.R., Willsky A.S. and S.W. Gully (1983). Nonlinear generalised likelihood ratio algorithms for manoeuver detection and estimation. Proceedings, 1982 American Control Conference, Arlington, Virginia, June 1983.

    Google Scholar 

  • Frank P.M. (1987). Fault diagnosis in dynamic systems via state estimation-A survey. In S. Tzafestas, M Singh, G. Schmidt (Eds.), System fault diagnostics, reliability and related knowledge-based approaches, D. Reidel, Dordrecht, 35–89.

    Google Scholar 

  • Frank P.M. (1990). Fault diagnosis in dynamic systems using analytical and knowledge-based redundancy-A survey and some new results. Automatica, 26, 3, 459–474.

    Article  MATH  Google Scholar 

  • Gantmacher R. (1974). The theory of matrices, Volume II. Chelsea Publishing Company, N.Y.

    Google Scholar 

  • Gertler, J.J. (1991). Analytical redundancy methods in failure detection and isolation in complex plants. Proceedings, IFAC/IMACS Symposium SAFEPROCESS ‘81, Baden—Baden, September 10–13, pp. 9–21.

    Google Scholar 

  • Gertler, J.J., Costin, J., Kowalczuk, Z., Fang, X., Hira, R. and Q. Luo (1991). Model—based on—board fault detection and diagnosis for automotive engines. Proceedings, IFAC/IMACSSymposium SAFEPROCESS ‘81, Baden—Baden, 503–508.

    Google Scholar 

  • Green C.S. (1978). An analysis of the multiple model adaptive control algorithm. Phd. Thesis, Report no. ESL-TH-843, Electronic Systems Laboratory, M.I.T.

    Google Scholar 

  • Grizzle J.W., Cook J.A. and K.L. Dobbins (1990). Individual Cylinder Air to Fuel Ratio Control with a Single EGO Sensor. Proceedings, 1990 American Control Conference, San Diego, CA, May 1990, 2881–2886.

    Google Scholar 

  • Gustafsson D.E., Willsky A.S., Wang J.-Y., Lancaster M.C. and J.H. Triebwasser (1978a). ECG/VCG Rhythm diagnosis using statistical signal analysis, I: Identification of persistent rhythms. IEEE Transactions on Biomedical Engineering, BME-25, 4, 344–353.

    Article  Google Scholar 

  • Gustafsson D.E., Willsky A.S., Wang J.-Y., Lancaster M.C. and J.H. Triebwasser (1978b). ECG/VCG Rhythm diagnosis using statistical signal analysis, I: Identification of transient rhythms. IEEE Transactions on Biomedical Engineering, BME-25, 4, 353–361.

    Article  Google Scholar 

  • Janssen K. and P.M. Frank (1984). Component failure detection via state estimation. Proceedings, 9th IFAC World Congress, Budapest, Hungary.

    Google Scholar 

  • Jenkin G.M. and D.G. Watts (1968). Spectral analysis and its applications. Holden Day, San Francisco.

    Google Scholar 

  • Jones H.L. (1973). Failure detection in linear systems. Phd. dissertation, Dept. Aeronautics and Astronautics, M.I.T.

    Google Scholar 

  • Karkanias N. and B. Kouvaritakis (1979). The output zeroing problem and its relationship to the invariant zero structure. International Journal of Control, 30, 395–415.

    Article  MathSciNet  Google Scholar 

  • Kasper R., Lückel J., Jaker K.P. and J. Schroer (1990). CACE Tool for Multi-Input,. Multi-Output Systems using a New Vector Optimisation Method. International Journal of Control, 51, 963–993.

    Article  MATH  Google Scholar 

  • Konik D. and S. Engell (1986). Sequential design of decentralised controllers using decoupling techniques. Part 2:Numerical aspects and application. Proceedings, 4th IFAC/IFORS Symposium on Large Scale Systems: Theory and Applications, Zurich, Switzerland.

    Google Scholar 

  • Kumamaru K. (1984). Statistical failure diagnosis for dynamical systems. Systems and Control, 28, 77–86.

    Google Scholar 

  • Lainiotis D.G. (1971). Joint detection, estimation and system identification, Information and Control, 19, 75–92.

    Article  MathSciNet  MATH  Google Scholar 

  • Lou X.C., Willsky A.S. and G.C. Verghese (1986). Optimal robust redundancy relations for failure detection in uncertain systems. Automatica, 22, 333–344.

    Article  MATH  Google Scholar 

  • Massoumnia, M.-A. (1986). A geometric approach to failure detection and identification in linear systems. Phd. Thesis, Dept. of Aeronautics and Astronautics, MIT.

    Google Scholar 

  • Massoumnia M.-A. and W.E. Vanderwelde (1988). Generating parity relations for detecting and identifying control system component failures. AIAA Journal of Guidance, Control and Dynamics, 11, 60–65.

    Article  MATH  Google Scholar 

  • Mehra, R.K. and I. Peschon (1971). An innovations approach to fault detection and diagnosis in dynamical systems. Automatica, 7, 637–640.

    Article  Google Scholar 

  • Mironovskii L.A. (1980). Functional diagnosis of dynamic system. Automation and remote control, 41, 1122–1143.

    Google Scholar 

  • Moore B.C. (1976). On flexibility offered by state feedback in multivariable systems beyond closed loop eigenvalue assignment. IEEE Transactions on Automatic Control, AC-21, 689–692.

    Google Scholar 

  • Moskwa J.J. and J.K. Hedrick (1987). Automotive Engine Modeling for Real Time Control Application. Proceedings of the 1987 American Control Conference, Vol. 1, pp. 341–346.

    Google Scholar 

  • Ono T., Kumamaru T. and K. Kumamaru (1984). Fault diagnosis of sensors using a gradient method. Transactions, Society of Instrument and Control Engineers, 20, 2227.

    Google Scholar 

  • Patton R.J. and J. Chen (1991). Robust fault detection using eigenstructure assignment: A tutorial consideration and some new results. Proceedings, 30th IEEE Conference on Decision and Control, Brighton, U.K., December 11–13, 2242–2247.

    Google Scholar 

  • Patton R.J. and J. Chen (1992). Robust fault detection of jet engine sensor systems by using eigenstructure assignment. Proceedings, AIIA Guidance, Navigation and Control Conference, New Orleans, August.

    Google Scholar 

  • Patton R.J., Chen J. and H.Y. Zhang (1992). Modelling methods for improving robustness in fault diagnosis of jet engine system. Proceedings, IEEE 31st Conference on Decision and Control, Tucson, Arizona, December 1992, 2330–2335.

    Google Scholar 

  • Patton R.J., Frank P.M. and R.N. Clark, Eds. (1989). Fault diagnosis in dynamic systems, Theory and Applications. Prentice-Hall, Englewood Cliffs, NJ.

    Google Scholar 

  • Patton R.J. and S.M. Kangethe (1989). Robust fault diagnosis using eigenstructure assignment of observers. In Patton R.J., Frank P.M. and R.N. Clark (Eds.), Fault diagnosis in dynamic systems: Theory and applications, Prentice Hall.

    Google Scholar 

  • Patton R.J. and S.M. Willcox (1986). Fault diagnosis in dynamic systems using a robust output zeroing design method. Proceedings, First European Workshop on Failure Diagnosis, Rhodes, Greece, August 31—September 3.

    Google Scholar 

  • Patton R.J., Willcox S. and S.J. Winter (1987). A parameter insensitive technique for aircraft sensor fault analysis, AIAA Journal of Guidance, Control and Dynamics, 10, 359–367.

    Article  Google Scholar 

  • Patton R.J., Zhang H.Y. and J. Chen (1992b). Modeling of uncertainties for robust fault diagnosis. Proceedings, IEEE 31st Conference on Decision and Control, Tucson, Arizona, December 16–18.

    Google Scholar 

  • Potter I.E. and M.C. Suman (1977). Thresholdless redundancy management with arrays of skewed instruments. Integrity in electronic flight control systems, AGARDOGRAPH-224, 15–11 to 15–25.

    Google Scholar 

  • Pouliezos A. (1980a). Fault monitoring schemes for linear stochastic systems. Phd. Thesis, Brunel University, England.

    Google Scholar 

  • Pouliezos A. (1980b). An iterative method for calculating the sample serial correlation coefficient. IEEE Transactions on Automatic Control, AC-25, 834–836.

    Google Scholar 

  • Pouliezos A. and G. Stavrakakis (1987). Linear estimation in the presence of sudden system changes: An expert system. In P. Borne, S. Tzafestas (Eds.), Applied modeling and simulation of technological systems, North-Holland, 41–48.

    Google Scholar 

  • Pouliezos A. and G. Stavrakakis (1991). A two-stage real-time fault monitoring system. Proceedings, European Robotics and Intelligent Systems Conference EURISCON ‘81, Corfu, Greece, June 23–28.

    Google Scholar 

  • Pouliezos A., Stavrakakis G. and G. Tselentis (1993). Detection of multivariable system noise degradation. Proceedings, IEEE Mediteranean Symposium on New Directions in Control Theory and Applications, Hania, Greece, June 21–23.

    Google Scholar 

  • Rizzoni G., Azzoni P.M. and G. Minelli (1993). On-board diagnosis of emission control malfunctions in electronically controlled spark igmition engines. Proceedings, International Conference on Fault Diagnosis TOOLDIAG ‘83, Toulouse,-France, April 5–7, 238–248.

    Google Scholar 

  • van Schrick D. (1991). Robust Observers for Track Control and Instrument Fault Detection of a City Bus. In Isermann R. (ed.), Preprints, IFAC/IMACS Symposium on Fault Detection, Supervision and Safety for Technical Processes-SAFEPROCESS ‘81, Baden-Baden, Germany, September 10–13, Vol. I, 227–231.

    Google Scholar 

  • Schneider H. and P.M. Frank (1992). Observer-based fault detection of robots enhanced by characteristic curves. Proceedings, IMACS/SICE International Symposium on Robotics, Mechatronics and Manufacturing Systems, Kobe, Japan.

    Google Scholar 

  • van Schrick D. (1993). Instrument fault detection scheme for inductive track-guided transportation vehicles. Proceedings, International Conference on Fault Diagnosis TOOLDIAG ‘83, Toulouse, France, April 5–7, 261–266.

    Google Scholar 

  • Tanaka Sand P.C. Müller (1990). Fault detection in linear discrete dynamic systems by a pattern recognition of a generalised likelihood ratio. Journal of Dynamic Systems, Measurement and Control, Transactions of the ASME, 112, 276–282.

    MATH  Google Scholar 

  • Uosaki K. (1985). Failure detection using backward SPRT. Proceedings, IFAC Symposium on Identification and System Parameter Estimation, York, U.K., 1619–1624.

    Google Scholar 

  • Uosaki K. and M. Kawagoe (1988). Backward SPRT failure detection system for detection of innovation variance change. Proceedings, IFAC Identification and System Parameter Estimation, Beijing, PRC.

    Google Scholar 

  • Van Trees H.L. (1968). Detection, estimation and modulation theory. John Wiley and Sons.

    Google Scholar 

  • Wald A. (1947). Sequential analysis. Wiley, New York.

    MATH  Google Scholar 

  • Watanabe, K. and D.M. Himmelblau (1982). Instrument fault detection in systems with uncertainties. International Journal of Systems Science, 13, 137–158.

    Article  MATH  Google Scholar 

  • Watanabe K., Yoshimura T. and T. Soeda (1979). A diagnosis design for a parametric failure. Transactions, Society of Instument and Control Engineers, 15, 901–906.

    Google Scholar 

  • Watanabe K., Yoshimura T. and T. Soeda (1981). A discrete-time adaptive filter for stochastic distributed parameter systems. Transactions, ASME Journal of Dynamic Systems, Measurement and Control, 103, 266–278.

    Article  MathSciNet  MATH  Google Scholar 

  • Willsky A.S. (1986). Detection of abrupt changes in dynamic systems. In M. Basseville and A. Benveniste (Eds.), Detection of abrupt changes in signals and dynamical systems, Springer-Verlag, 27–49.

    Google Scholar 

  • Willsky A.S., Chow E.Y., Gershwin S.B., Greene C.S., Houpt P.K. and A.L. Kurkjian (1980). Dynamic model-based techniques for the detection of incidents on freeways. IEEE Transactions on Automatic Control, AC-25.

    Google Scholar 

  • Willsky A.S., Deyst J.J. and B.S. Crawford (1974a). Adaptive filtering and self—test methods for failure detection and compensation. Proceedings of the Joint Automatic Control Conference, Austin, Texas, 637–645.

    Google Scholar 

  • Willsky A.S., Deyst J.J. and B.S. Crawford (1974b). Two self—test methods applied to an inertial system problem. Journal of Spacecraft and Rockets, 12, 434–437.

    Article  Google Scholar 

  • Willsky A.S. and H.L. Jones (1976). A generalised likelihood ratio approach to the detection and estimation of jumps in linear systems. IEEE Transactions on Automatic Control, AC-21, 108–112.

    Google Scholar 

  • Wünnenberg J. and P.M. Frank (1987). Sensor fault detection via robust observers. In S. Tzafestas, M. Singh, G. Schmidt (Eds.), System fault diagnostics, reliability and related knowledge—based approaches, D. Reidel, 147–160.

    Google Scholar 

  • Yoshimura T., Watanabe K., Konishi K. and T.A. Soeda (1979). Sequential failure detection approach and the identification of failure parameters, International Journal of Systems Science, 10, 827–836.

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Pouliezos, A.D., Stavrakakis, G.S. (1994). Analytical Redundancy Methods. In: Real Time Fault Monitoring of Industrial Processes. International Series on Microprocessor-Based and Intelligent Systems Engineering, vol 12. Springer, Dordrecht. https://doi.org/10.1007/978-94-015-8300-8_2

Download citation

  • DOI: https://doi.org/10.1007/978-94-015-8300-8_2

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-4374-0

  • Online ISBN: 978-94-015-8300-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics