Skip to main content

Part of the book series: Fundamental Theories of Physics ((FTPH,volume 60))

  • 541 Accesses

Abstract

Integral equations of Volterra type arise quite naturally in physical applications modelled by initial-value problems. Consider the linear Volterra equation of the second kind. (Fredholm equations of the second kind which are associated with boundary value problems for a fmite interval [a,b], are similar except that the upper limit is b.)

EquationSource% MathType!MTEF!2!1!+- % feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyqaiabgU % caRiaadkeaaaa!3864! ]></EquationSource><EquationSource Format="TEX"><![CDATA[$$\varphi \left( x \right)=f\left( x \right)+\lambda \int_{a}^{x}{K\left( x,y \right)}\varphi \left( y \right)dy$$

with a ≤ x, y ≤ b, and let λ = 1. Using decomposition EquationSource% MathType!MTEF!2!1!+- % feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyqaiabgU % caRiaadkeaaaa!3864!]></EquationSource><EquationSource Format="TEX"><![CDATA[$$\varphi =\sum\nolimits_{n=0}^{\infty }{{{\varphi }_{n}}}\left( x \right)$$, we identify φ 0 = f(x) assuming f(x) ≠ 0,

EquationSource% MathType!MTEF!2!1!+- % feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyqaiabgU % caRiaadkeaaaa!3864! ]></EquationSource><EquationSource Format="TEX"><![CDATA[$$\phi \left( x \right)={{\phi }_{0}}+\int_{a}^{x}{K}\left( x,y \right)\sum\limits_{n=0}^{\infty }{{{\phi }_{n}}}\left( y \right)dy$$

then and write EquationSource% MathType!MTEF!2!1!+- % feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyqaiabgU % caRiaadkeaaaa!3864!]></EquationSource><EquationSource Format="TEX"><![CDATA[$$\varphi =\sum\nolimits_{n=0}^{\infty }{{{\varphi }_{n}}}$$ as the solution, or with an m-term approximant EquationSource% MathType!MTEF!2!1!+- % feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyqaiabgU % caRiaadkeaaaa!3864!]></EquationSource><EquationSource Format="TEX"><![CDATA[$$\varphi =\sum\nolimits_{m=0}^{m-1}{{{\varphi }_{n}}}$$. In some cases, exact solutions are determinable. Consider an example:

EquationSource% MathType!MTEF!2!1!+- % feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyqaiabgU % caRiaadkeaaaa!3864! ]></EquationSource><EquationSource Format="TEX"><![CDATA[$$K\left( x,y \right)=|y-x|$$
EquationSource% MathType!MTEF!2!1!+- % feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyqaiabgU % caRiaadkeaaaa!3864! ]></EquationSource><EquationSource Format="TEX"><![CDATA[$$f\left( x \right)=x$$

Then

EquationSource% MathType!MTEF!2!1!+- % feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyqaiabgU % caRiaadkeaaaa!3864! ]></EquationSource><EquationSource Format="TEX"><![CDATA[$${{\varphi }_{1}}=\int_{0}^{x}{|y-x|}{{\varphi }_{0}}\left( y \right)dy=\int_{0}^{x}{|y-x|ydy}=-{{x}^{3}}/3!$$

Thus the two-term approximant is

EquationSource% MathType!MTEF!2!1!+- % feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyqaiabgU % caRiaadkeaaaa!3864! ]></EquationSource><EquationSource Format="TEX"><![CDATA[$$\varphi \simeq {{\varphi }_{1}}+{{\varphi }_{2}}=x-\left( {{x}^{3}}/3! \right)$$

or φ = sin x as is easily verified either by calculating more terms or by substitution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Reference

  1. Y. Cherruault, G. Saccomandi, and B. Some, New Results for the Convergence of Adomian’s Method Applied to Integral Equations, Math. Comput. Modelling, 16, (8593) (1992).

    Google Scholar 

Suggested Reading

  1. G. Adomian, Nonlinear Stochastic Operator Equations, Academic Press, New York (1986).

    Google Scholar 

  2. B. Some, Some Recent Numerical Methods for Solving Hammersteins Integral Equations, Math. Comput. Modelling, to appear.

    Google Scholar 

  3. B. Some, A New Computational Method for Solving Integral Equations, submitted for publication.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Adomian, G. (1994). Integral Equations. In: Solving Frontier Problems of Physics: The Decomposition Method. Fundamental Theories of Physics, vol 60. Springer, Dordrecht. https://doi.org/10.1007/978-94-015-8289-6_10

Download citation

  • DOI: https://doi.org/10.1007/978-94-015-8289-6_10

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-4352-8

  • Online ISBN: 978-94-015-8289-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics