Skip to main content

Sensory and Motor Functions of the Hand

  • Chapter

Part of the book series: Neuropsychology and Cognition ((NPCO,volume 6))

Abstract

Needless to say, the hand is the principal instrument for writing and writing is one of the most fundamental things we do with the hand. It is therefore worthwhile to consider in some detail the hand in a book dealing with several aspects of writing. In this chapter I do not claim to present a complete and detailed review of the functions of the hand, but I will try to describe some fundamental sensory and motor mechanisms in an attempt to construct an overview of hand functioning. The hand is both a sensory and a motor organ, so that the sensory functions cannot be completely separated from the motor ones. When we explore the world with our hands, the tactile information arriving at our brain plays an essential role in the ongoing motor behavior. This continuous sensory inflow and motor outflow represents what has been called “active touch” (Gibson, 1962) or “haptics” (Revesz, 1950; Kennedy, 1978). Thus these terms mean the combined action of skin, joints and muscles for acquiring information from the external world. On the other hand, the movement of an object across a stationary hand represents the condition we call “passive touch.” In such a situation the hand behaves merely as a sensory organ. In contrast, when the hand performs movements such as preshaping in grasping behavior, it behaves as a motor organ. The hand can therefore be used as a sensory detector, a motor device, or both.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Asanuma, H. (1973). Cerebral cortical control of movement. Physiologist. 16, 143–166.

    PubMed  Google Scholar 

  • Asanuma, H., and Sakata, H. (1967). Functional organization of a cortical efferent system examined with focal depth stimulation in cats. Journal of Neurophysiology 30, 35–54.

    Google Scholar 

  • Benedetti, F. (1985). Processing of tactile spatial information with crossed fingers. Journal of Experimental Psychology: Human Perception and Performance. 11, 517–525.

    Article  PubMed  Google Scholar 

  • Benedetti, F. (1986a). Tactile diplopia (diplesthesia) on the human fingers. Perception, 15, 83–91.

    Article  PubMed  Google Scholar 

  • Benedetti, F. (1986b). Spatial organization of the diplesthetic and nondiplesthetic areas of the fingers. Perception, 15, 285–301.

    Article  PubMed  Google Scholar 

  • Benedetti, F. (1988a). Exploration of a rod with crossed fingers. Perception and Psychophysics, 44, 281–284.

    Article  PubMed  Google Scholar 

  • Benedetti, F. (1988b). Localization of tactile stimuli and body parts in space: two dissociated perceptual experiences revealed by a lack of constancy in the presence of position sense and motor activity. Journal of Experimental Psychology: Human Perception and Performance. 14, 69–76.

    Article  PubMed  Google Scholar 

  • Benedetti, F. (1990). Goal directed motor behavior and its adaptation following reversed tactile perception in man. Experimental Brain Research 81, 70–76.

    Article  Google Scholar 

  • Benedetti, F. (1991a). Perceptual learning following a longlasting tactile reversal. Journal of Experimental Psychology: Human Perception and Performance, in press.

    Google Scholar 

  • Benedetti, F. (1991b). Reorganization of tactile perception following the simulated amputation of one finger. Perception, in press.

    Google Scholar 

  • Calford, M.B., and Tweedale, R. (1988). Immediate and chronic changes in responses of somatosensory cortex in adult flying-fox after digit amputation. Nature, 332, 446–448.

    Article  PubMed  Google Scholar 

  • Clark, S.A., Allard, T., Jenkins, W.M., and Merzenich, M.M. (1988). Receptive fields in the body-surface map in adult cortex defined by temporally correlated inputs. Nature, 332, 444–445.

    Article  PubMed  Google Scholar 

  • Coquery, J-M. (1978). Role of active movement in control of afferent input from skin in cat and man. In Gordon G. (Ed.), Active touch (pp. 161–169). Oxford: Pergamon Press.

    Google Scholar 

  • Costanzo, R.M., and Gardner, E.P. (1980). A quantitative analysis of responses of direction-sensitive neurons in somatosensory cortex of awake monkeys. Journal of Neurophysiology, 43, 1319–1341.

    PubMed  Google Scholar 

  • Darian-Smith, I. (1982). Touch in primates. Annual Review of Psychology 33, 155–194.

    Article  PubMed  Google Scholar 

  • Deecke, L., and Kornhuber, H.H. (1978). An electrical sign of participation of the mesial “supplementary” motor cortex in human voluntary finger movement. Brain Research 159, 473476.

    Article  Google Scholar 

  • Dreyer, D.A., Loe, P.A., Metz, C.B., and Whitsel, B.L. (1975). Representation of head and face in postcentral gyrus of the macaque. Journal of Neurophysiology. 38, 714–733.

    PubMed  Google Scholar 

  • Dyhre-Poulsen, P. (1978). Perception of tactile stimuli before ballistic and during tracking movements. In Gordon G. (Ed.), Active touch (pp. 171–176). Oxford: Pergamon Press.

    Google Scholar 

  • Evarts, E.V. (1966). Pyramidal tract activity associated with a conditioned hand movement in the monkey. Journal of Neurophysiology, 29, 1011–1027.

    PubMed  Google Scholar 

  • Evarts, E.V. (1968). Relation of pyramidal tract activity to force exerted during voluntary movement. Journal of Neurophysiology, 31, 14–27.

    PubMed  Google Scholar 

  • Freund, H.-J., and Hummelsheim, H. (1984). Premotor cortex in man: evidence for innervation of proximal limb muscles. Experimental Brain Research, 53, 479–482.

    Article  Google Scholar 

  • Friedman, D.P., Jones, E.G., and Burton, H (1980). Representation pattern in the second somatic sensory area of the monkey cerebral cortex. Journal of Comparative Neurology, 192, 21–41.

    Article  PubMed  Google Scholar 

  • Gandevia, S.C, and McCloskey, D.I. (1977). Effects of related sensory inputs on motor performances in man studied through changes in perceived heaviness. Journal of Physiology (London), 272, 653–672.

    Google Scholar 

  • Garcha, H.S., and Ettlinger, G. (1978). The effects of unilateral or bilateral removals of the second somatosensory cortex (Area SII): a profound tactile disorder in monkeys. Cortex, 14, 319–326.

    PubMed  Google Scholar 

  • Gardner, E.P., and Costanzo, R.M. (1980). Neuronal mechanisms underlying direction sensitivity of somatosensory cortical neurons in awake monkeys. Journal of Neurophysiology, 43, 1342–1354.

    PubMed  Google Scholar 

  • Gibson, J.J. (1962). Observations on active touch. Psychological Review, 69, 477–491.

    Article  PubMed  Google Scholar 

  • Goodwin, G.M., McCloskey, D.I., and Matthews, P.B.C. (1972). The contribution of muscle afférents to kinaesthesia shown by vibration induced illusions of movement and by the effects of paralysing joint afférents. Brain, 95, 705–748.

    Article  PubMed  Google Scholar 

  • Hyvärinen, J. (1982). The parietal cortex of monkey and man. Berlin, Heidelberg: Springer-Verlag.

    Book  Google Scholar 

  • Hyvärinen, J., and Poranen, A. (1974). Function of the parietal associative area 7 as revealed from cellular discharges in alert monkeys. Brain, 97, 673–692.

    Article  PubMed  Google Scholar 

  • Hyvärinen, J., and Poranen, A. (1978a). Movement-sensitive and direction and orientation-selective cutaneous receptive fields in the hand area of the post-central gyrus in monkeys. Journal of Physiology (London) 283, 523–537.

    Google Scholar 

  • Hyvärinen, J., and Poranen, A. (1978b). Receptive field integration and submodality convergence in the hand area of the post-central gyrus of the alert monkey. Journal of Physiology (London), 283, 539–556.

    Google Scholar 

  • Iwamura, Y., and Tanaka, M. (1978). Postcentral neurons in hand region of area 2: their possible role in the form discrimination of tactile objects. Brain Research, 150, 662–666.

    Article  PubMed  Google Scholar 

  • Iwamura, Y., Tanaka, M., Sakamoto, M., and Hikosaka, O. (1983). Converging patterns of finger representation and complex response properties of neurons in area 1 of the first somatosensory cortex of the conscious monkey. Experimental Brain Research 51, 327–337.

    Google Scholar 

  • Iwamura, Y., Tanaka, M., Sakamoto, M., and Hikosaka, O. (1985). Functional surface integration, submodality convergence, and tactile feature detection in area 2 of the monkey somatosensory cortex. In Goodwin A.W. and Darian-Smith I. (Eds.), Hand function and the neocortex (pp. 44–58). Berlin, Heidelberg: Springer-Verlag.

    Chapter  Google Scholar 

  • Jankowska, E., Padel, Y., and Tanaka, R. (1976). Disynaptic inhibition of spinal motoneurones from the motor cortex in the monkey. Journal of Physiology (London), 258, 467–487.

    Google Scholar 

  • Jeannerod, M., Michel, F., and Prablanc, C. (1984). The control of hand movements in a case of hemianaesthesia following a parietal lesion. Brain, 107, 899–920.

    Article  PubMed  Google Scholar 

  • Jenkins, W.M., Merzenich, M.M., and Ochs, M.T. (1984). Behaviorally controlled differential use of restricted hand surfaces induces changes in the cortical representation of the hand in area 3b of adult owl monkeys. Society for Neuroscience Abstracts, 10, 665.

    Google Scholar 

  • Johansson, R.S., and Vallbo, A.B. (1983). Tactile sensory coding in the glabrous skin of the human hand. Trends in Neurosciences, 6, 27–32.

    Article  Google Scholar 

  • Johansson, R.S., and Vallbo, A.B. (1979). Tactile sensibility in the human hand: relative and absolute densities of four types of mechanoreceptive units in glabrous skin. Journal of Physiology (London), 286, 283–300.

    Google Scholar 

  • Jones, E.G., and Burton, H. (1976). Areal differences in the laminar distribution of thalamic afférents in cortical fields of the insular, parietal and temporal regions of primates. Journal of Comparative Neurology, 168, 197–248.

    Article  PubMed  Google Scholar 

  • Jones, E.G., Coulter, J.D., and Hendry, S.H.C. (1978). Intracortical connectivity of architectonic fields in the somatic sensory, motor and parietal cortex of monkeys. Journal of Comparative Neurology 181, 291–348.

    Article  PubMed  Google Scholar 

  • Jones, E.G., Coulter, J.D., and Wise, S.P. (1979). Commissural columns in the sensory-motor cortex of monkeys. Journal of Comparative Neurology, 188, 113–136.

    Article  PubMed  Google Scholar 

  • Jones, E.G., and Friedman, D.P. (1982). Projection pattern of functional components of thalamic ventrobasal complex on monkey somatosensory cortex. Journal of Neurophysiology, 48, 521–544.

    PubMed  Google Scholar 

  • Jones, E.G., and Powell, T.P.S. (1969a). Connexions of the somatic sensory cortex of the rhesus monkey. L Ipsilateral cortical connexions. Brain, 92, 477–502.

    Article  PubMed  Google Scholar 

  • Jones, E.G., and Powell, T.P.S. (1969b). Connexions of the somatic sensory cortex of the rhesus monkey. II. Contralateral connexions. Brain, 92, 717–730.

    Article  PubMed  Google Scholar 

  • Jones, E.G., and Powell, T.P.S. (1970). Connexions of the somatic sensory cortex of the rhesus monkey. III Thalamic connexions. Brain, 93, 37–56.

    Article  PubMed  Google Scholar 

  • Kaas, J.H., Nelson, R.J., Sur, M., Lin, C-S., and Merzenich, M.M. (1979). Multiple representations of the body within the primary somatosensory cortex of primates. Science, 204, 521–523.

    Article  PubMed  Google Scholar 

  • Kelahan, A.M., and Doetsch, G.S. (1984). Time-dependent changes in the functional organization of somatosensory cerebral cortex following digit amputation in adult raccoons. Somatosensory Research, 2, 49–81.

    PubMed  Google Scholar 

  • Kennedy, J.M. (1978). Haptics. In Carterette E.C. and Friedman M.P. (Eds.), Handbook of Perception, Vol. VIII (pp. 289-318). New York: Academic Press.

    Google Scholar 

  • Lang, W., Lang, M., Kornhuber, A., Deecke, L., and Komhuber, H.H. (1984). Human cerebral potentials and visuomotor learning. Pflugers Archiv. European Journal of Physiology, 399, 342–344.

    Google Scholar 

  • LeGros-Qark, W.E. (1959). The antecedents of man. New York: Harper and Row.

    Google Scholar 

  • Leinonen, L., Hyvärinen, J., and Sovijarvi, A.R.A. (1980). Functional properties of neurons in the temporoparietal association cortex of awake monkey. Experimental Brain Research, 39, 203–215.

    Article  Google Scholar 

  • Leinonen, L., and Nyman, G. (1979). Functional properties of cells in anterolateral part of area 7, associative face area of awake monkey. Experimental Brain Research, 34, 321–333.

    Google Scholar 

  • Lucier, G.E., Ruegg, D.C., and Wiesendanger, M. (1975). Responses of neurones in motor cortex and in Area 3a to controlled stretches of forelimb muscles in cebus monkeys. Journal of Physiology (London). 251, 833–853.

    Google Scholar 

  • Lundberg, A. (1979). Integration in a propriospinal motor centre controlling the forelimb in the cat. In Asanuma H. and Wilson V.J. (Eds.), Integration in the nervous system (pp. 47–64). Tokyo: Igaku-Shoin.

    Google Scholar 

  • Marsden, CD., Rothwell, J.C., and Day, B.L. (1984). The use of peripheral feedback in the control of movement. Trends in Neurosciences, 7, 253–257.

    Article  Google Scholar 

  • Matthews, P.B.C. (1982). Where does Sherrington’s “muscular sense” originate? Muscles, joints, corollary discharges? Annual Review of Neuroscience, 5, 189–218.

    Article  PubMed  Google Scholar 

  • McCloskey, D.I. (1980). Kinaesthelic sensations and motor commands in man. In Desmedt J.E. (Ed.), Progress in clinical neurophysiology Vol. 8. Spinal and supraspinal mechanisms of voluntary motor control and locomotion (pp. 203–214). Basel: Karger.

    Google Scholar 

  • Merzenich, M.M., and Kaas, J.H. (1982). Reorganization of mammalian somatosensory cortex following peripheral nerve injury. Trends in Neurosciences, 5, 434–436.

    Article  Google Scholar 

  • Merzenich, M.M., Kaas, J.H., Sur, M., and Tin, C-S. (1978). Double representation of the body surface within cytoarchitectonic area 3b and 1 in “SI” in the owl monkey (Aotus trivirgatus). Journal of Comparative Neurology 181, 41–74.

    Article  PubMed  Google Scholar 

  • Merzenich, M.M., Kaas, J.H., Wall, J.T., Nelson, R.J., Sur, M., and Felleman, DJ. (1983a). Topographic reorganization of somatosensory cortical Areas 3b and 1 in adult monkeys following restricted deafferentation. Neuroscience. 8, 33–55.

    Article  PubMed  Google Scholar 

  • Merzenich, M.M., Kaas, J.H., Wall, J.T., Sur, M., Nelson, R.J., and Felleman, DJ. (1983b). Progression of change following median nerve section in the cortical representation of the hand in Areas 3b and 1 in adult owl and squirrel monkeys. Neuroscience, 10, 639–665.

    Article  PubMed  Google Scholar 

  • Mountcastle, V.B. (1984). Central nervous mechanisms in mechanoreceptive sensibility. In Brookhart J.M. and Mountcastle V.B. (Eds.), Handbook of physiology, Section 1 (The. nervous system), Vol. III (Sensory processes, Part 2, pp. 789–878). Bethesda: American Physiological Society.

    Google Scholar 

  • Mountcastle, V.B., Lynch, J.C, Georgopoulos, A., Sakata, H., and Acuna, C. (1975). Posterior parietal association cortex of the monkey: command functions for operations within extrapersonal space. Journal of Neurophysiology, 38, 871–908.

    PubMed  Google Scholar 

  • Nelson, RJ. (1985). Sensorimotor cortex responses to vibrotactile stimuli during initiation and execution of hand movement In Goodwin A.W. and Darian-Smith L (Eds.), Hand function and the neocortex (pp. 59-76). Berlin, Heidelberg: Springer-Verlag.

    Google Scholar 

  • Nelson, R.J., Sur, M., Felleman, D.J., and Kaas, J.H. (1980). Representations of the body surface in the postcentral parietal cortex of Macaca fascicularis. Journal of Comparative Neurology, 192, 611–643.

    Article  PubMed  Google Scholar 

  • Penfield, W., and Rasmussen, T. (1950). The cerebral cortex in man. New York: Macmillan.

    Google Scholar 

  • Phillips, C.G., and Porter, R. (1977). Corticospinal neurons: their role in movement. London: Academic Press.

    Google Scholar 

  • Phillips, CG., Powell, T.P.S., and Wiesendanger, M. (1971). Projection from low-threshold muscle afferent of the hand and forearm to area 3a of the baboon’s cortex. Journal of Physiology (London) 217, 419–446.

    Google Scholar 

  • Pons, T.P., Garraghty, P.E., Friedman, D.P., and Mishkin, M. (1987). Physiological evidence for serial processing in somatosensory cortex. Science 237, 417–420.

    Article  PubMed  Google Scholar 

  • Powell, T.P.S., and Mountcastle, V.B. (1959). Some aspects of the functional organization of the cortex of the postcentral gyrus of the monkey: a correlation of findings obtained in a single unit analysis with cytoarchitecture. Bulletin of Johns Hopkins Hospital, 105, 133–162.

    Google Scholar 

  • Preston, J.B., and Whitlock, D.G. (1961). Precentral facilitation and inhibition of spinal motoneurons. Journal of Neurophysiology 24, 91–100.

    PubMed  Google Scholar 

  • Randolph, M.C., and Semmes, J. (1974). Behavioral consequences of selective subtotal ablations in the postcentral gyrus of Macaca mulatta. Brain Research, 70, 55–70.

    Article  PubMed  Google Scholar 

  • Revesz, G. (1950). Psychology and art of the blind. Toronto: Longmans.

    Google Scholar 

  • Ridley, R.M., and Ettlinger, G. (1978). Further evidence of impaired tactile learning after removals of the second somatic sensory projection cortex (SIII) in the monkey. Experimental Brain Research 31, 475–488.

    Article  Google Scholar 

  • Robinson, C.J., and Burton, H. (1980). Somatotopographic organization in the second somatosensory area of M. fascicularis. Journal of Comparative Neurology, 192, 43–67.

    Article  PubMed  Google Scholar 

  • Roland, P.E., Larsen, B., Lassen, N.A., and Skinhoj, E. (1980). Supplementary motor area and other cortical areas in organization of voluntary movements in man. Journal of Neurophysiology, 43, 118–136.

    PubMed  Google Scholar 

  • Rothwell, J.C., Traub, M.M., Day, B.L., Obeso, J. A., Thomas, P.K., and Marsden, CD. (1982). Manual motor performance in a deafferented man. Brain, 105, 515–542.

    Article  PubMed  Google Scholar 

  • Sakata, H., and Iwamura, Y. (1978). Cortical processing of tactile information in the first somatosensory and parietal association areas in the monkey. In Gordon G. (Ed.), Active touch (pp. 55–72). Oxford: Pergamon Press.

    Google Scholar 

  • Sakata, H., Takaoka, A., Kawarasaki, A., and Shibutani, H. (1973). Somatosensory properties of neurons in superior parietal cortex (area 5) of the rhesus monkey. Brain Research, 64, 85–102.

    Article  PubMed  Google Scholar 

  • Schreiber, H., Lang, M., Lang, W., Kornhuber, A., Heise, B., Keidel, M., Deecke, L., and Kornhuber, H.H. (1983). Frontal hemispheric differences in the Bereitschaftspotential associated with writing and drawing. Human Neurobiology, 2, 197–202.

    PubMed  Google Scholar 

  • Semmes, J., Porter, L., and Randolph, M.C. (1974). Further studies of anterior postcentral lesions in monkeys. Cortex, 10, 55–68.

    PubMed  Google Scholar 

  • Smith, A.M., Hepp-Reymond, M.-C, and Wyss, U.R. (1975). Relation of activity in precentral cortical neurons to force and rate of force change during isometric contractions of finger muscles. Experimental Brain Research 23, 315–332.

    Article  Google Scholar 

  • Vogt, B.A., and Pandya, D.N. (1977). Cortico-cortical connections of somatic sensory cortex (areas 3, 1 and 2) in the rhesus monkey. Journal of Comparative Neurology, 177, 179–192.

    Article  Google Scholar 

  • Wall, J.T. (1988). Variable organization in cortical maps of the skin as an indication of the lifelong adaptive capacities of circuits in the mammalian brain. Trends in Neurosciences, 11, 549–557.

    Article  PubMed  Google Scholar 

  • Wall, J.T., and Cusick, C.G. (1984). Cutaneous responsiveness in primary somatosensory (S-I) hin dpa w cortex before and after partial hindpaw deafferentation in adult rats. Journal of Neuroscience, 4, 1499–1515.

    PubMed  Google Scholar 

  • Werner, G., and Whitsel, B.L. (1968). Topology of the body representation in somatosensory area 1 of primates. Journal of Neurophysiology, 31, 856–869.

    PubMed  Google Scholar 

  • Whitsel, B.L., Dreyer, D.A., and Roppolo, J.R. (1971). Determinants of body representation in postcentral gyrus of macaques. Journal of Neurophysiology 34, 1018–1034.

    PubMed  Google Scholar 

  • Whitsel, B.L., Petrucelli, L.M., and Werner, G. (1969). Symmetry and connectivity in the map of the body surface in somatosensory area II of primates. Journal of Neurophysiology, 32, 170–183.

    PubMed  Google Scholar 

  • Wise, S.P., and Evarts, E.V. (1981). The role of cerebral cortex in movement. Trends in Neurosciences, 4, 297–300.

    Article  Google Scholar 

  • Wise, S.P., and Strick, P.L. (1984). Anatomical and physiological organization of the non-primary motor cortex. Trends in Neurosciences, 7, 442–446.

    Article  Google Scholar 

  • Woolsey, C.N. (1943). “Second” somatic receiving areas in the cerebral cortex of cat, dog and monkey. Federation Proceedings, 2, 55.

    Google Scholar 

  • Woolsey, C.N., Marshall, W.H., and Bard, P. (1942). Representation of cutaneous tactile sensibility in the cerebral cortex of the monkey as indicated by evoked potentials. Bulletin of Johns Hopkins Hospital, 70, 399–441.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Benedetti, F. (1994). Sensory and Motor Functions of the Hand. In: Watt, W.C. (eds) Writing Systems and Cognition. Neuropsychology and Cognition, vol 6. Springer, Dordrecht. https://doi.org/10.1007/978-94-015-8285-8_17

Download citation

  • DOI: https://doi.org/10.1007/978-94-015-8285-8_17

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-4344-3

  • Online ISBN: 978-94-015-8285-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics