Skip to main content

Sea Level Rise Problems

  • Chapter
  • 130 Accesses

Part of the book series: NATO ASI Series ((NSSE,volume 275))

Abstract

The greenhouse warming over the next 100 years has been calculated by means of the coupled atmosphere-ocean model of the Max-Planck-Institute of Meteorology Hamburg. The computations are based on the IPCC (Intergovernmental Panel on Climate Change) scenarios A (“Business as usual”) and D (“Accelerated policies”) and a “2×CO2” experiment. As a reference state the “constant 1985 CO2 concentration” has been chosen. The resulting global increase of the mean near bottom air temperature after 100 years is 2.6 K for scenario A, 0.6 K for D and 1.7 K for the “2×CO2” scenario. The corresponding global sea level rise due to the thermal expansion of the ocean is 15 cm for scenario A, 5 cm for D and 16 cm for the “2×CO2” experiment. These values seem to be small, but they have a strongly increasing tendency. The calculated changes of heat and salt fluxes at the sea surface have been used to drive an ocean general circulation model. Here a global mean of the temperature increase of 2.9°K within 50 years has been computed. However, the geographical distribution of the anomalies is very distinct: in tropical latitudes only small changes appear, where a maximum heating of more than 4.0°K occurs at the polar fronts. The largest sea level rise of more than 30 cm can thus be found in the latter regions. These global coupled atmosphere-ocean climate models typically have a horizontal resolution of about 500 km. Therefore they can only provide new climatologies, i.e. global atmospheric pressure and circulation patterns as well as large scale changes of the sea level, but not regional forecasts (e.g. for the North Sea with typical scales of 10 km). Thus, a “downscaling” is required. Appropriate methods are grid focusing and development of empirical transfer functions linking global atmospheric patterns and actual weather situations (such as local storms). Procedures are presented and examples given, demonstrating how the transient wind forcing in a regional sea can be derived from global climate models. Next, using a mesoscale resolving ocean model, possible extreme surges are predicted. The applications refer to the North Sea, but can be extended to other threatened areas of the world like Bangladesh.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • André J.C. (1994). Numerical models for the simulation of natural and anthropogenic climate variations. In this volume.

    Google Scholar 

  • Backhaus J.O. (1979). First results of a three-dimensional model on the dynamics in the German Bight. In: Proc. of 10th Internat. Liège Colloq. on Ocean Hydrodynam. Editor: J.C.J. Nihoul. Elsevier, Amsterdam (Elsevier Oceanography Series, 25: 333–349.

    Google Scholar 

  • Backhaus J.O. (1985). A three-dimensional model for the simulation of shelf sea dynamics. Deutsche hydrographische Zeitschrift, 38:165–187.

    Article  Google Scholar 

  • Bardossy A. and Plate E.J (1992). Space-time model for daily rainfall using atmospheric circulation patterns. Water Resources Research 28:1247–1259.

    Article  Google Scholar 

  • Bardossy A. (1994). Estimation of extreme regional precipitation under climate change. In this volume.

    Google Scholar 

  • Cubasch U., Hasselmann K., Höck H., Maier-Reimer E., Mikolajewicz U., Santer B.D. and Sausen R. (1992). Transient greenhouse warming computations with a coupled ocean-atmosphere model. Climate Dynamics, 8: 55–69.

    Article  Google Scholar 

  • Hasselmann K. (1991). Ocean circulation and climate change. Tellus 43 (AB): 82–103.

    Google Scholar 

  • Hewer R. (1980). Untersuchungen zur Entwicklung von Extrem Sturmfluten an der Deutschen Nordseeküste auf der Basis hydrodynamisch-numerischer Modelle. Institut für Meereskunde der Universitat Hamburg, Diploma Thesis, 1–132.

    Google Scholar 

  • IPCC (1990). Climate change: The IPCC Scientific Assessment. Editors: J.T. Houghton, G.J. Jenkins and J.J. Ephraums. Cambridge University Press, Cambridge, 1–365.

    Google Scholar 

  • Karl T.R., Wang W., Schlesinger M.E., Knight R.W. and Portman D. (1990). A method of relating general circulation model simulated climate to the observed local climate — Part I: Seasonal statistics. Journal of Climate, 3: 1053–1079.

    Article  Google Scholar 

  • Maier-Reimer E. and Mikolajewicz U. (1989). Experiments with an OGCM on the cause of the Younger Dryas. Max-Planck Institut für Meteorologie Hamburg, Report n°. 39: 1–13.

    Google Scholar 

  • Mikolajewicz U. and Maier-Reimer E. (1990). On the sensitivity of the global ocean circulation to surface forcing. Climate Dynamics, 4:145–154.

    Article  Google Scholar 

  • Mikolajewicz U., Santer B. and Maier-Reimer E. (1990). Ocean response to Greenhouse warming. Nature 345: 589–593.

    Article  Google Scholar 

  • Plate E.J. (1994). The effect of climate change on storm surges. In this volume.

    Google Scholar 

  • Pohlmann T. (1991). Untersuchung hydro- und thermodynamischer Prozesse in der Nordsee mit einem dreidimensionalen numerischen Modell. Berichte des Zentrums für Meeresund Klimaforschung Hamburg, n° 23.

    Google Scholar 

  • Pohlmann T. (1993). Predicting the Thermocline in a Circulation Model of the North Sea — Part I: Model Description, Calibration and Verification. In press in: Continental Shelf Research.

    Google Scholar 

  • Storch H.V., Zorita E. and Cubasch U. (1993). Downscaling of global climate change estimates to regional scales: An application to Iberian rainfall in wintertime. Journal of Climate, 6: 1161–1171.

    Article  Google Scholar 

  • Stouffer R.J., Manabe S. and Bryan K. (1989). Interhemispheric asymmetry in climate response to a gradual increase of atmospheric CO2. Nature, 324: 660–662.

    Article  Google Scholar 

  • Sündermann J. (1966). Ein Vergleich zwischen der analytischen und der numerischen Berechnung winderzeugter Strömungen und Wasserstände in einem Modellmeer mit Anwendungen auf die Nordsee. Mitteilungen des Instituts für Meereskunde Universitat Hamburg n°.4,77S.

    Google Scholar 

  • Washington W.M. and Meehl G.A. (1989). Climate sensitivity due to increased CO2: experiments with a coupled atmosphere and ocean general circulation model. Climate Dynamics, 4: 1–38.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Pohlmann, T., Sündermann, J. (1994). Sea Level Rise Problems. In: Duckstein, L., Parent, E. (eds) Engineering Risk in Natural Resources Management. NATO ASI Series, vol 275. Springer, Dordrecht. https://doi.org/10.1007/978-94-015-8271-1_13

Download citation

  • DOI: https://doi.org/10.1007/978-94-015-8271-1_13

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-4441-9

  • Online ISBN: 978-94-015-8271-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics