Advertisement

Rigid Body Dynamics

  • B. Tabarrok
  • F. P. J. Rimrott
Part of the Solid Mechanics and Its Applications book series (SMIA, volume 31)

Abstract

In the foregoing we have studied the motion of particles. Strictly speaking, the term point mass should have been used instead of particle, in order to emphasize the theoretical nature of the concept. A point mass represents a finite mass of infinitesimal volume. Reality comes close to it in many cases. Even a huge body such as the earth, can be looked upon as a point mass, for example when its fundamental motion about the sun is investigated.

Keywords

Point Mass Euler Angle Inertia Tensor Principal Moment Angular Velocity Vector 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Suggested Reading

  1. 1.
    Christoffersen, Jes, “When is a Moment Conservative?”, DCAMM Report 374, Lyngby, (1988).Google Scholar
  2. 2.
    Greenwood, Donald T., “Principles of Dynamics”, Prentice-Hall, (1988).Google Scholar
  3. 3.
    Goldstein, Herbert, “Classical Mechanics”, Addison-Wesley, (1978).Google Scholar
  4. 4.
    Liu, Yan-Zhu, “Gyrodynamics” (in Chinese), Science Press, Beijing, (1986).Google Scholar
  5. 5.
    Magnus, K., “Kreisel”,Springer-Verlag, (1971).Google Scholar
  6. 6.
    Merkin, D.P., “Gyroscopic Systems” (in Russian), Nauka, Moskva, (1974).Google Scholar
  7. 7.
    Mikhailov, G.K.; Schmidt, G.; Sedov, L.I., “Leonhard Euler und das Entstehen der klassischen Mechanik”, ZAMM 64, (1984), 73–82MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    Rimrott, F.P.J., “Introductory Attitude Dynamics”, Springer-Verlag, (1988).Google Scholar
  9. 9.
    Rimrott, F.P.J.; Szczygielski, W.M., “Attitude Diagrams for Torque-free Gyros”, Transactions of CSME 17, (1993), 45–65Google Scholar
  10. 10.
    Rimrott, F.P.J., Szczygielski, W.M., Tabarrok, B., “Kinetic Energy and Complementary Kinetic Energy in Gyrodynamics”, Transactions of ASME Journal of Applied Mechanics 60, (1993), 398–405zbMATHCrossRefGoogle Scholar
  11. 11.
    Truesdell, C., “Die Entwicklung des Drallsatzes”, ZAMM 44, (1964), 149–158MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    Wittenburg, J., “Dynamics of Systems of Rigid Bodies”, B.G. Teubner, (1977).zbMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1994

Authors and Affiliations

  • B. Tabarrok
    • 1
  • F. P. J. Rimrott
    • 2
  1. 1.Department of Mechanical EngineeringUniversity of VictoriaVictoriaCanada
  2. 2.Department of Mechanical EngineeringUniversity of TorontoTorontoCanada

Personalised recommendations