Skip to main content

Part of the book series: Synthese Library ((SYLI,volume 242))

Abstract

The aim of this article is to explain that the hyperreal line is, what it looks like, and what it is good for. Near the beginning of the article we shall draw pictures of the hyperreal line and sketch its construction as an ultrapower of the real line. In the middle part of the article, we shall survey mathematical results about the structure of the hyperreal line. Near the end, we shall discuss philosophical issues concerning the nature and significance of the hyperreal line.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Albeverio, S., Fenstad, F. E., Høegh-Krohn, R. and Lindstrøm, T.: 1986, Nonstandard Methods in Stochastic Analysis and Mathematical Physics, Academic Press, New York.

    MATH  Google Scholar 

  • Anderson, R. M.: 1976, ‘A Non-standard Representation of Brownian Motion and Itô Integration’, Israel J. Math., 86, 85–97.

    Google Scholar 

  • Arkeryd, L.: 1984, ‘Loeb Solutions of the Boltzmann Equation’, Arch. Rational Mech. Anal., 86, 85–97.

    Article  MathSciNet  MATH  Google Scholar 

  • Barwise, J.: 1975, Admissible Sets and Structures, Springer-Verlag.

    Book  MATH  Google Scholar 

  • van den Berg, I. P.: 1987, Nonstandard Asymptotic Analysis, Springer Lecture Notes in Math. 1249.

    MATH  Google Scholar 

  • Chang, C. C. and Keisler, H. J.: 1990, Model Theory, North-Holland (Third Edition).

    MATH  Google Scholar 

  • Conway, J. H.: 1976, On Numbers and Games, Academic Press.

    MATH  Google Scholar 

  • Cutland, N. J.: 1986, ‘Infinitesimal Methods in Control Theory, Deterministic and Stochastic’, Acta Appl. Math., 5, 105–136.

    Article  MathSciNet  MATH  Google Scholar 

  • Cutland, N. J.: 1988, Nonstandard Analysis and its Applications, London Math. Soc.

    Book  MATH  Google Scholar 

  • Diener, F. and Diener, M.: 1988, ‘Some Asymptotic Results in Ordinary Differential Equations’, in N. J. Cutland (Ed.), Nonstandard Analysis and its Applications, pp. 282–297, London Math. Society.

    Chapter  Google Scholar 

  • Henson, C. W.: 1979, ‘Analytic Sets, Baire Sets, and the Standard Part Map’, Canadian J. Math., 31, 663–672.

    Article  MathSciNet  MATH  Google Scholar 

  • Henson, C. W.: 1979, ‘Unbounded Loeb Measures’, Proc. Amer. Math. Soc., 74, 143–150.

    Article  MathSciNet  MATH  Google Scholar 

  • Henson, C. W., Kaufmann, M. and Keisler, H. J.: 1984, ‘The Strength of Nonstandard Methods in Arithmetic’, J. Symb. Logic, 49, 1039–1058.

    Article  MathSciNet  MATH  Google Scholar 

  • Henson, C. W. and Keisler, H. J.: 1986, ‘On the Strength of Nonstandard Analysis’, J. Symb. Logic, 51, 377–386.

    Article  MathSciNet  MATH  Google Scholar 

  • Hurd, A. E. and Loeb, P. A.: 1985, Introduction to Nonstandard Real Analysis, Academic Press.

    MATH  Google Scholar 

  • Jin, R.: 1992, ‘Cuts in Hyperfinite Time Lines’, J. Symb. Logic, 57, 522–527.

    Article  MATH  Google Scholar 

  • Jin, R. and Keisler, H. J.: 1993, ‘Game Sentences and Ultrapowers’, Ann. Pure and Appl. Logic, 60, 261–274.

    Article  MathSciNet  MATH  Google Scholar 

  • Kamo, S.: 1981, ‘Nonstandard Natural Number Systems and Nonstandard Models’, J. Symb. Logic, 46, 365–376.

    Article  MathSciNet  MATH  Google Scholar 

  • Keisler, H. J.: 1964, ‘Good Ideals in Fields of Sets’, Ann. Math., 79, 338–359.

    Article  MathSciNet  MATH  Google Scholar 

  • Keisler, H. J.: 1963, ‘Limit Ultrapowers’, Trans. Amer. Math. Soc., 107, 383–408.

    Article  MathSciNet  Google Scholar 

  • Keisler, H. J.: 1986, Elementary Calculus: An Infinitesimal Approach, Second Edition, PWS Publishers.

    MATH  Google Scholar 

  • Keisler, H. J.: 1984, ‘An Infinitesimal Approach to Stochastic Analysis’, Memoirs Amer. Math. Soc., 297.

    Google Scholar 

  • Keisler, H. J., Kunen, K., Leth, S. and Miller, A.: 1989, ‘Descriptive Set Theory over Hyperfinite Sets’, J. Symb. Logic, 54, 1167–1180.

    Article  MathSciNet  MATH  Google Scholar 

  • Keisler, H. J. and Leth, S.: 1991, ‘Meager Sets in the Hyperfinite Time Line’, J. Symb. Logic, 56, 71–102.

    Article  MathSciNet  MATH  Google Scholar 

  • Kunen, K. and Miller, A.: 1983, ‘Borel and Projective Sets from the Point of View of Compact Sets’, Math. Proc. Camb. Phil. Soc., 94, 399–409.

    Article  MathSciNet  MATH  Google Scholar 

  • Laugwitz, A. H. and Schmieden, C.: 1958, ‘Eine Erweiterung der Infinitesimalrechnung’, Math. Z., 69, 1–39.

    Article  MathSciNet  MATH  Google Scholar 

  • Lightstone, A. H. and Robinson, A.: 1975, Non-Archimedean Fields and Asymptotic Analysis, North-Holland.

    Google Scholar 

  • Loeb, P. A.: 1975, ‘Conversion from Nonstandard to Standard Measure Spaces and Applications in Probability Theory’, Trans. Amer. Math. Soc., 211, 113–122.

    Article  MathSciNet  MATH  Google Scholar 

  • LoÅ›, J.: 1955, ‘Quelques Remarques, Théorèmes et Problèmes sur les Classes Définissables d’Algèbres’, in Mathematical Interpretation of Formal Systems, pp. 98–113, North-Holland.

    Google Scholar 

  • Luxemburg, W. A. J.: 1962, Non-standard Analysis, mimeographed Notes, Cal. Inst. Tech., Pasadena, CA.

    Google Scholar 

  • Luxemburg, W. A. J.: 1962, ‘Two Applications of the Method of Construction by Ultrapowers to Analysis’, Bull. Amer. Math. Soc., 68, 416–419.

    Article  MathSciNet  MATH  Google Scholar 

  • Morley, M. and Vaught, R.: 1962, ‘Komogeneous Universal Models’, Math. Scand., 11, 37–57.

    MathSciNet  MATH  Google Scholar 

  • Nelson, E.: 1977, ‘Internal Set Theory; A New Approach to Nonstandard Analysis’, Bull. Amer. Math. Soc., 83, 1165–1198.

    Article  MathSciNet  MATH  Google Scholar 

  • Pincus, D.: 1974, ‘The Strength of the Hahn-Banach Theorem’, in A. E. Hurd and P. A. Loeb (Eds.), Victoria Symposium on Nonstandard Analysis, pp. 203–248, Springer Lecture Notes 369.

    Chapter  Google Scholar 

  • Rashid, S.: 1987, Economies With Many Agents: A Nonstandard Approach, John Hopkins.

    MATH  Google Scholar 

  • Robert, A.: 1988, Nonstandard Analysis, Wiley.

    MATH  Google Scholar 

  • Robinson, A.: 1966, Nonstandard Analysis, North-Holland.

    Google Scholar 

  • Robinson, A. and Zakon, E.: 1969, ‘A Set-theoretical Characterization of Enlargements’, in W. A. J. Luxemburg (Ed.), Applications of Model Theory to Algebra, Analysis, and Probability, pp. 109–122, Holt, Rinehart, Winston.

    Google Scholar 

  • Simpson, S.: 1984, ‘Which Set Existence Axioms are Needed to Prove the CauchyPeano Theorem for Ordinary Differential Equations?’, J. Symb. Logic, 49, 783–802.

    Article  MATH  Google Scholar 

  • Spector, M.: 1988, ‘Ultrapowers Without the Axiom of Choice’, J. Symb. Logic, 53, 1208–1219.

    Article  MathSciNet  MATH  Google Scholar 

  • Stroyan, K. D. and Bayod, J. M.: 1986, Foundations of Infinitesimal Stochastic Analysis, North-Holland.

    MATH  Google Scholar 

  • Tarski, A.: 1920, ‘Une Contribution à la théorie de la mesure’, Fund. Math., 15, 42–50.

    Google Scholar 

  • Tarski, A. and Mckinsey, J. C. C.: 1948, A Decision Method for Elementary Algebra and Geometry, 2nd ed., Berkeley, Los Angeles.

    MATH  Google Scholar 

  • Zakon, E.: 1969, ‘Remarks on the Nonstandard Real Axis’, in W. A. J. Luxemburg (Ed.), Applicatons of Model Theory to Algebra, Analysis, and Probability, pp. 195–227, Holt, Rinehart, Winston.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Keisler, H.J. (1994). The Hyperreal Line. In: Ehrlich, P. (eds) Real Numbers, Generalizations of the Reals, and Theories of Continua. Synthese Library, vol 242. Springer, Dordrecht. https://doi.org/10.1007/978-94-015-8248-3_8

Download citation

  • DOI: https://doi.org/10.1007/978-94-015-8248-3_8

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-4362-7

  • Online ISBN: 978-94-015-8248-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics