Skip to main content

The Relevance of Primate Corticogenesis for Understanding the Emergence of Cognitive Abilities in Man

  • Chapter

Part of the book series: NATO ASI Series ((ASID,volume 69))

Abstract

The expansion of the cerebral hemispheres distinguishes higher mammals and provides the morphological substrate for the rich behavioral repertoire found in primates including man. In the present paper we aim to examine the factors which control the development of the cerebral cortex.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Berman, N.E. and Payne, B.R. (1983) Alterations in connections of the corpus callosum following convergent and divergent strabismus. Brain Res. 274, 201–212.

    Article  Google Scholar 

  • Blasdel, G.G. and Lund, J.S. (1983) Termination of afferent axons in macaque striate cortex. J. Neurosci. 3, 1389–1413.

    Google Scholar 

  • Bullier, J. and Kennedy, H. (1983) Projection of the lateral geniculate nucleus onto cortical area V2 in the Macaque monkey. Exp.Brain Res. 53, 168–172

    Article  Google Scholar 

  • Bullier, J., Dehay, C. and Kennedy, H. (1984) Axonal Bifurcation and cortico-cortical connectivity in the kitten visual cortex. J. Physisol.(Lond.) 353, 22P

    Google Scholar 

  • Catalano, S.M., Robertson, R.T. and Killackey, H.P. (1990) Early growth of thalamocortical afférents to the neocortex of the prenatal rat. Proc. Natl. Acad. Sci USA 88, 2999–3003.

    Article  Google Scholar 

  • Changeux, J.P. (1985) Remarks on the complexity of the nervous system and its ontogenesis. In J. Mehler and R. Fox (eds.), Neonate Cognition. Lawrence Erlbaum, London, pp. 263–284.

    Google Scholar 

  • Changeux, J.P. and Danchin, A. (1976) Selective stabilisation of developing synapses as a mechanism for the specification of neuronal networks. Nature 264, 705–712.

    Article  Google Scholar 

  • Changeux, J.P. and Dehaenne, S. (1989) Neuronal models of cognitive functions. Cognition 33, 63–109.

    Article  Google Scholar 

  • Clarke S., and Innocenti, G.M. (1986) Organization of immature intrahemispheric connections. J. Comp. Neurol. 251, 1–22.

    Article  Google Scholar 

  • Cowan, M.W., Fawcet, J.W., O’Leary, D.D.M. and Stanfield, B.B. (1984) regressive events in neurogenesis. Science 225, 1258–1265.

    Article  Google Scholar 

  • Cragg, B.G. (1975) The development of synapses in the visual system of the cat. J. Comp. Neurol. 160, 147–166.

    Article  Google Scholar 

  • Dehay, C. and Kennedy, H. (1988) The maturational status of thalamocortical and callosal connections of visual areas VI and V2 in the newborn monkey. Behav. Brain Res. 29, 217–224.

    Article  Google Scholar 

  • Dehay, C, Bullier, J. and Kennedy, H. (1984) Transient projections from the frontoparietal and temporal cortex to areas 17, 18 and 19 in the kitten. Exp. Brain Res. 57, 208–212.

    Article  Google Scholar 

  • Dehay, C., Horsburgh, G., Berland, M, Killackey, H. and Kennedy, H (1991) The effects of bilateral enucleation in the primate fetus on the panellation of visual cortex. Dev. Brain Res. 62, 137–141.

    Article  Google Scholar 

  • Dehay C., Horsburgh, G., Berland, M., Killackey, H. and Kennedy, H. (1989) Influence of bilateral enucleation in the prenatal monkey on the callosal connectivity of the visual cortex. Nature 337, 265–267.

    Article  Google Scholar 

  • Dehay, C., Kennedy, H. and Bullier, J. (1988a) Characterisation of transient cortical projections from auditory, somatosensory and motor cortices to visual areas 17, 18 and 19 in the kitten. J. Comp. Neurol. 272, 68–89.

    Article  Google Scholar 

  • Dehay, C., Kennedy, H., and Bullier, J. (1986) Callosal connectivity of areas VI and V2 in the newborn monkey. J. Comp. Neurol. 254, 20–33.

    Google Scholar 

  • Dehay, C., Kennedy, H., Bullier, J. and Berland, M. (1988b) Absence of interhemispheric connections of area 17 during development in the monkey. Nature. 331, 348–350.

    Article  Google Scholar 

  • Edelman, G.M. (1987) Neural Darwinism. New-York. Basic Books.

    Google Scholar 

  • Feinberg, I. (1982) Schizophrenia: caused by a fault in programmed synaptic elimination during adolescence. J. Psychiat. Res. 17, 319–334.

    Article  Google Scholar 

  • Gould, S.J. (1977) Ontogeny and Phylogeny. Cambridge, M.A. Harvard University Press.

    Google Scholar 

  • Ghosh, A. and Shatz, C. J. (1991) Pathfinding and target selection. J. Neurosci. 12.

    Google Scholar 

  • Gribbin, J. and Cherfas, J. (1982). The monkey puzzle. The Bodley Head Ltd.

    Google Scholar 

  • Horridge G.A. (1968) Interneurons. Freeman, San Francisco, p. 321.

    Google Scholar 

  • Huttenlocher, P.R. (1979) Synaptic density in human frontal cortex; developmental changes and effects of aging. Brain Res., 163, 195–205.

    Article  Google Scholar 

  • Huttenlocher, P.R., De Courten, C., Garey, L.J. and Van der Loos, H. (1982). Synaptogenesis in human visual cortex. Evidence for synapse elimination during normal development. Neurosci. Lett. 33, 247–252.

    Article  Google Scholar 

  • Innocenti, G.M., and Frost, D.O. (1980) The postnatal development of visual callosal connections in the absence of visual experience of the eyes. Exp. Brain Res. 39, 365–375.

    Article  Google Scholar 

  • Innocenti, G.M and Clarke, S. (1984) Bilateral transitory projection to visual areas from auditory cortex in kittens. Dev. Brain Res. 14, 143–148.

    Article  Google Scholar 

  • Jones, E.G (1985) The Thalamus. Plenum Press, New-York

    Google Scholar 

  • Kennedy, H. and Bullier, J. (1985) A double-labelling investigation of the afferent connectivity of the afferent connectivity to cortical areas V1 and V2. J. Neurosci. 5, 2815–2830.

    Google Scholar 

  • Kennedy, H., Bullier, J. and Dehay, C. (1985) Cytochrome oxidase activity in the striate cortex and lateral geniculate nucleus of the newborn and adult macaque monkey. Exp. Brain Res. 57, 208–212.

    Google Scholar 

  • Kennedy, H., Bullier, J. and Dehay, C. (1989) Transient projection from the superior temporal sulcus to area 17 in the newborn macaque monkey. Proc. Natl. Acad. Sci., USA 86, 8093–8097.

    Article  Google Scholar 

  • Kennedy, H., Dehay, C. and Horsburgh, G. (1990) Striate cortex periodicity. Nature 348, 494.

    Article  Google Scholar 

  • Kennedy, H., Dehay, C. and Bullier, J. (1986) The organization of the callosal connections of visual areas VI and V2 in the macaque monkey. J. Comp. Neurol. 247, 398–415.

    Article  Google Scholar 

  • Kennedy, H., Meissirel, C. and Dehay, C. (1991) Callosal pathways in primates and their compliancy to general rules of cortical connectivity, in B. Dreher and S. Robinson (eds.), Neuroanatomy of the visual pathways and their development. Vol 3: J. Cronly-Dillon (ed.) Vision and Visual Dysfunction, McMillan Press, pp. 324–359.

    Google Scholar 

  • King, M.C. and Wilson, A.C. (1975) Evolution at two levels in humans and chimpanzees. Science 188, 107–116.

    Article  Google Scholar 

  • Kuljis, R.O. and Rakic, P. (1990) Hypercolumns in primate visual cortex can develop in the absence of cues from photoreceptors. Proc. Natl. Acad. Sei USA 87, 5305–5362.

    Article  Google Scholar 

  • Levay, S., Stryker, M.P. and Shatz, C.J. (1978) Ocular dominance columns and their development in layer IV of the cat’s visual cortex. A quantitative study. J. Comp. Neurol. 191, 1–51.

    Article  Google Scholar 

  • Lund, R.D. and Mustari, M.J. (1977) Development of the geniculocortical pathway in rats. J. Comp. Neurol. 173, 286–306.

    Article  Google Scholar 

  • Lund, R.D., Mitchell, D.E. and Henry, G.H. (1978) Squint-induced modification of callosal connections in cats. Brain Res. 144, 169–172.

    Article  Google Scholar 

  • Martin, K.A.C. (1988) From enzymes to visual perception: A bridge too far? TINS 11, 380–387

    Google Scholar 

  • Mayr, E. (1963) Animal species and evolution. Harvard University Press, Cambridge, MA.

    Google Scholar 

  • Price, DJ. and Blakemore, C. (1985) The postnatal development of the association projection from visual cortical area 17 to area 18 of the cat. J. Neurosci. 5, 2443–2452.

    Google Scholar 

  • Purves, D. and Lichtman, J.W. (1980). Elimination of synapses in the developing nervous system. Science 210, 153–157.

    Article  Google Scholar 

  • Rakic, P. (1988) Specification of cerebral cortical areas. Science 241, 170–176.

    Article  Google Scholar 

  • Sarich, V.M. and Cronin, J.E. (1976) Molecular systematics of the primates, in M. Goodman and R.F. Tashian (eds.), Molecular anthrology. Plenum Press, New York, pp. 141–170.

    Chapter  Google Scholar 

  • Savatier, P., Trabuchet, G., Chebloune, Y., Faure, C., Verdier, G. and Nigon, V.M. (1987) Nucleotide sequence of the delta beta globin intergenic segment in the macaque: structure and evolutionary rates in higher primates. J. Mol. Evol. 24, 297–308.

    Article  Google Scholar 

  • Shatz, C.J and Luskin, M.B. (1986) The relationship between the geniculocortical afférents and their cortical target cells during development of the cat’s primary visual cortex J. Neurosci. 6, 3655–3668.

    Google Scholar 

  • Van Essen, D.C. and Maunsell, J.H.R. (1983) Hierarchical organization and functional streams in the visual cortex. Trends Neurosci. 6, 370–375.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Kennedy, H., Dehay, C. (1993). The Relevance of Primate Corticogenesis for Understanding the Emergence of Cognitive Abilities in Man. In: de Boysson-Bardies, B., de Schonen, S., Jusczyk, P., McNeilage, P., Morton, J. (eds) Developmental Neurocognition: Speech and Face Processing in the First Year of Life. NATO ASI Series, vol 69. Springer, Dordrecht. https://doi.org/10.1007/978-94-015-8234-6_2

Download citation

  • DOI: https://doi.org/10.1007/978-94-015-8234-6_2

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-4251-4

  • Online ISBN: 978-94-015-8234-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics